Warm Up: Solve for θ for $0^{\circ} \le \theta \le 360^{\circ}$

a)
$$2\cos\theta = \cos\theta - 1$$

b)
$$sin^2\theta - 2sin\theta + 1 = 0$$

To solve trig equations you generally must only have one type of trig function in the equation. Use your trig identities to simplify the equation.

Ы

QI

RΙ

Example 1:

a)
$$sec\theta = -2$$

b)
$$csc\theta = \sqrt{2}$$

b)
$$csc\theta = \sqrt{2}$$
 c) $sin\theta sec\theta = \sqrt{3}$

d)
$$6 cos^2 \theta - sin \theta - 4 = 0$$

e)
$$2\sin\theta\sec\theta + \sec\theta - 2\sin\theta - 1 = 0$$

U6D9 Practice: Page 408-409 #3bdg, 5def, 11(factor by grouping). Solve in degrees.

U6D10 Review Practice: p. 412 – 417 #15, 16, 17, 18, 19, 20 degrees only, 21 (a-period=540°, b – period=180°), 22, 24, 25ab, 26, 27b ($\pi/4=4^{\circ}$, $\pi/2=90^{\circ}$), 30, 31, 35-37 (in degrees – teacher will provide answers for 35,36, 37 p. 418 #4cd, 7ab, c(phase shift 45°), 8a, 12(in degrees, teacher will provide answers) (eoo), 9

A few more review questions

Function	Domain	Range	Amplitude	Period	Phase Shift
$y = 2\sin(x - 90^{\circ})$					
$y = \frac{1}{2}cos(x + 90^\circ)$					
$y = \frac{1}{2}sin(\frac{1}{2}x - 180^{\circ}) - 2$					
$y = 2\cos\frac{1}{2}(x - 180^\circ) + 1$					