U6D6 MCR3UI Warm Up:

1) If the amplitude is 2.5 , the sinusoidal axis is $y=8$, period is 225° and the phase shift is 45° to the left, determine the equation of the cosine function. $a=2.5$

$$
\begin{aligned}
c=8 \quad \text { period } & =\frac{360^{\circ}}{225^{\circ}} \quad d=-45^{\circ} \\
& =\frac{72}{45} \quad y=a \cos k(x-d)+c \\
& =\frac{8}{5} \quad y=2.5 \cos 1.6\left(x+45^{\circ}\right)+8
\end{aligned}
$$

(®) 1.6
2) Given the equation $y=2 \sin \left(5\left(x-90^{\circ}\right)\right)-3$, identify:

Amplitude: 2
Period: $\frac{360^{\circ}}{5}$

$$
=72^{\circ}
$$

Key points, every: $\frac{72^{\circ}}{4}$. Phase Shift: Right 90°

$$
=18^{\circ}
$$

Sinusoidal Axis: $y=-3$ Max value: $\begin{gathered}c+a m p . \\ -3+2\end{gathered}$ Min value: $\begin{gathered}c-a m p \\ -3-2\end{gathered}$

$$
=-1 \quad=-5
$$

Domain: $\{x \mid x \in \mathbb{R}\}$ Range: $\{y \mid y \in \mathbb{R},-5 \leq y \leq-1\}$

Method 1: You can graph transformations of sinusoidal functions the same as transformations of other functions.

- First graph reflections in the x-axis and vertical stretches/compressions.
- Next, graph horizontal stretches/compressions.
- Finally, graph vertical and horizontal translations.

OR
Method 2: Given: $y=\operatorname{asin}(x-d)+c$ or $y=\operatorname{acos}(x-d)+c$ You can identify the amplitude, period, sinusoidal axis and phase shift.
Determine the maximum and minimum values by calculating:

$$
\max =\mathrm{c}+|\mathrm{a}| \text { and } \min =\mathrm{c}-|\mathrm{a}|
$$

First we will graph $y=\operatorname{asin}(x-d)+c$ or

$$
y=\operatorname{acos}(x-d)+c \text { with no phase shift: }
$$

- Graph the sinusoidal axis
- Plot the sine intercepts (at 0°, period/2, period for sine function)
- Plot the maximum and minimum points
- Join the curve
- Now graph the phase shift.

The method for graphing cosine is similar.

Example 1: Sketch the graph of $y=4 \cos \left(x-30^{\circ}\right)+2$
Amplitude: 4 Sinusoidal Axis: $y=2$
Period: $360^{\circ} \quad$ Phase Shift: Right 30°
Maximum: $\begin{gathered}2+4 \\ =6\end{gathered} \quad$ Minimum: $\begin{aligned} & 2-4 \\ & =-2\end{aligned}$
For Method 2, no chart is necessary (use key information such as amp, axis, period, etc.)

For Method 1 (Using transformations on five key points) a chart is helpful. I do NOT Decommend Method 1.

$y=\cos x$	$\left(0^{\circ}, 1\right)$	$\left(90^{\circ}, 0\right)$	$\left(180^{\circ},-1\right)$	$\left(270^{\circ}, 0\right)$	$\left(360^{\circ}, 1\right)$
$y=4 \cos x$	$\left(0^{\circ}, 4\right)$	$\left(90^{\circ}, 0\right)$	$\left(180^{\circ},-4\right)$	$\left(270^{\circ}, 0\right)$	$\left(360^{\circ}, 4\right)$
$y=4 \cos \left(x-30^{\circ}\right)+2$	$\left(30^{\circ}, 6\right)$	$\left(120^{\circ}, 2\right)$	$\left(210^{\circ},-2\right)$	$\left(300^{\circ}, 2\right)$	$\left(390^{\circ}, 6\right)$

Example 2: Sketch the graph of $y=3 \cos \frac{2}{3} x-1 \quad 360^{\circ} \div \frac{2}{3}$ Amplitude: $\begin{aligned} \text { Sinusoidal Axis: } y=-1 \text { Period: } & =360^{\circ} \times \frac{3}{2} \\ & =540^{\circ}\end{aligned}$ Phase Shift:

$$
\begin{array}{rlrl}
\text { Maximum: }-1+3 & \text { Minimum: } & -1-3 \\
& =2 & & =-4
\end{array}
$$

Method 2 (using key information such as amp, axis, period, etc.)

Chart for Method 1: only for students using method 1.

$y=\cos x$	$\left(0^{\circ},\right)$	$\left(90^{\circ}, \quad\right)$	$\left(180^{\circ}, \quad\right)$	$\left(270^{\circ}, \quad\right)$	$\left(360^{\circ}, \quad\right)$
$y=3 \cos x$					
$y=3 \cos _{3}^{2} x$					
$y=3 \cos _{3}^{2} x-1$					

Example 3: Sketch the graph of $y=-\sin \left(2 x+60^{\circ}\right)+4$
HINT: Remember to factor first (if necessary)! $y=-\sin 2\left(x+30^{\circ}\right)+4$
Amplitude: 1 Sinusoidal Axis: $y=4$ Period: $\frac{360^{\circ}}{2}=180^{\circ}$

Phase Shift: Left 30° Maximum: $4+1$
$=5$
Minimum: 4-1
$=3$

Method 2 (using kexinformutionsuchion amp, axis, period, etc.)

Chart for Method 1:

$y=\sin x$	$\left(0^{\circ},\right)$	$\left(90^{\circ}, \quad\right)$	$\left(180^{\circ}, \quad\right)$	$\left(270^{\circ}, \quad\right)$	$\left(360^{\circ}, \quad\right)$

Example 4: Write one equation for the following using $y=\sin x$ as the base function and one using $y=\cos x$.

U6D6 Practice: Page 387 \#5cd, 7bcd, 8d, $9\left(\mathrm{P}\right.$ is $360^{\circ}, 180^{\circ}, 720^{\circ}$, and 90° respectively and H is 180° and 90° respectively),
$\# 11 \mathrm{~b}\left(\pi=180^{\circ}, 2 \pi=360^{\circ}, 3 \pi=540^{\circ}\right)$

$$
\begin{aligned}
\frac{\pi}{4} & =\frac{180^{\circ}}{4} \\
& =45^{\circ}
\end{aligned}
$$

