U6D5_T_Translations Trig

U6D5_T_Tr anslations...

U6D5 MCR 3UI Translations of Sinusoidal Functions

Vertical Shifts:

This is the same as vertical shifts with other functions.

* If $c>0$, shift the y-values up c - units.
* If $\mathrm{c}<0$, shift the v -values down $\mathrm{c}-$ units.

The "sinusoidal axis" is at $y=c$

Example 1: Sketch the graph of $y=\sin x$ and $y=\sin x+2$ (use the 5 key points)

NOTE: If it does not say how many cycles to sketch then you must fill the grid.

Amplitude:
Period: 360°

Sinusoidal Axis: $y=2$
Domain: $\{x \mid x \in \mathbb{R}\}$
Maximum: $c+|a|$

$$
\begin{aligned}
& =2+1 \\
& =3
\end{aligned}
$$

Phase Shift:
Range: $\{y|y \in \mathbb{R}| \leqslant y \leqslant 3$,
Minimum: $C-|a|$
$=2-1$
$=1$

Horizontal Shifts (also known as PHASE SHIFTS)

Example 2: Sketch one cycle of $y=\cos x$ and $y=\cos (x+309$ on the grid below.

Amplitude: $1 \quad$ Period: 360° Phase Shift: left 30°
Sinusoidal Axis: $y=0$ Domain (for one cycle): $\left\{x \mid x \in \mathbb{R},-30^{\circ} \leq x \leq 330\right\}$ Range: $\{y \mid y \in \mathbb{R},-1 \leq y \leq 1\}$
Maximum:

$$
\text { Minimum: }-1
$$

Example 3: Sketch two cycles of $y=\cos x-3$ and $y=\cos \left(x-45^{\circ}\right)-3$ on the grid below.

$y=\cos x-3$	$\left(0^{\circ}, 1\right)$	$\left(90^{\circ}, 0\right)$	$\left(180^{\circ},-1\right)$	$\left(270^{\circ}, 0\right)$	$\left(360^{\circ}, 1\right)$
$y=\cos \left(x-45^{\circ}\right)$	$\left(45^{\circ}, 1\right)$	$\left(135^{\circ}, 0\right)$	$\left(225^{\circ},-1\right)$	$\left(315^{\circ}, 0\right)$	$\left(405^{\circ}, 1\right)$

Amplitude: \square Period: 360° Phase Shift: right 45°

Sinusoidal Axis: $y=-3$ Domain (for 2 cycles): $\left\{x \mid x \in \mathbb{R},-180^{\circ} \leqslant x \leqslant 540^{\circ}\right\}$
Range: $\{y \mid y \in \mathbb{R},-4 \leq y \leq-2\}$
Maximum: $-3+1$ Minimum: $-3-1$

$$
=-2 \quad=-4
$$

Example 4: If the amplitude is 6 , the sinusoidal axis is $y=-3$, period is 600° and the phase shift is 60° to the right, determine the equation of the sine function.

$$
\begin{gathered}
a=6 \quad c=-3 \quad k=\frac{360^{\circ}}{600^{\circ}} \quad d=60^{\circ} \\
k=\frac{3}{5} \\
y=6 \sin \frac{3}{5}\left(x-60^{\circ}\right)-3
\end{gathered}
$$

Example 5: Given the equation $y=\frac{1}{5} \sin \left(\frac{3}{2}\left(x+120^{\circ}\right)\right)+7$, identify:

Amplitude: $\frac{1}{5}$
Period: $360^{\circ} \times \frac{2}{3}$

$$
=240^{\circ}
$$

Phase Shift:

Sinusoidal Axis: $y=7 \quad$ Max value: $7+\frac{1}{5} \quad$ Min value: $7-\frac{1}{5}$

$$
=\frac{36}{5} \circledast 7.2=\frac{34}{5} @ 6.8
$$

Domain: $\{x \mid x \in \mathbb{R}\}$
Range: $\{y \mid y \in \mathbb{R}, 6.8 \leq y \leq 7.2\}$

