U6D4_T_Horz Stretch Trig

Thursday, May 2, 2019 6:48 PM

U6D4_T_H orz Stretc...

U6D4 MCR 3UI Horizontal Stretches of Periodic Functions

Recall: When a trig function was <u>vertically</u> stretched (or compressed), the key idea was the fact that the function's AMPLITUDE was altered. Notice that if a graph is stretched/compressed vertically, a measurement on the y-axis is changed.

So, if we stretch/compress a graph horizontally, a measurement on the x-axis is changed.

From the graph of a trig function, what is the key term measured on the x-axis? He Period

In general:

Transformations that applied to f(x), also apply to trig functions:

For functions in the form y = sinkx or y = coskx,

- If k > 1, the graphs are horizontally <u>compressed</u> by a factor of $\frac{1}{k}$
- If 0 < k < 1, the graphs are horizontally <u>stretched</u> by a factor of $\frac{1}{k}$
- Amplitude is unchanged
- Period becomes $\frac{360^{\circ}}{k}$ \Rightarrow $k = \frac{360^{\circ}}{Period}$

<u>Graphing Horizontal stretches/compressions using the 5-Point</u> Graphing Method

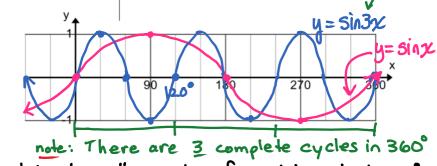
When we have a horizontal stretch/compression, the period is altered, therefore our 5 key points will also be altered. Remember that the 5 key points divided our period into quarters...therefore, divide the new period by 4 and you will have the locations of the new 5 key points (the amplitude is unchanged, so our y-values will remain the same)

remain the same)

1. Graph $y = \sin x$ and $y = \sin 3x$ on the grid below.

Recall the 5 Key Points of $y = \sin x$ Period of $y = \sin 3x$ is $\frac{360}{3} = 128$ Therefore, our 5 key points will occur every

х	sin x	x	sin 3x
O°	D	O°	0
90°		30°	1
180°	0	60°	0
270°	-1	90°	-1
360°	0	120°	0
	_		



k is always the number of complete cycles in 360°.

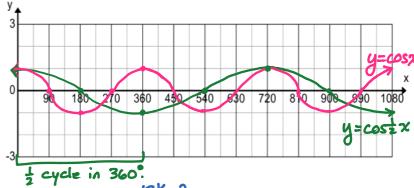
U6D4 Practice: Page 374 #2 (all – just in degrees, not radians), 3 – 6 (b only), 8b (typo – max is at 3), 10c, 11bc, 12c

Period = $\frac{360^{\circ}}{k}$, $k = \frac{1}{2}$ 2. Graph $y = \cos x$ and $y = \cos \frac{1}{2}x$ on the grid below:

Period of $y = \cos\left(\frac{1}{2}x\right)$ is: 360 ÷ $\frac{1}{2}$. Key points every 720° 180°

x	cos x	
0°	1	
90°	0	
180°	-1	
270°	0	
360°	-	

2	13	
x	$\cos \frac{1}{2} x$	$= 360^{\circ} \times \frac{2}{1}$
9	1	=720°
188	0	
366	-	
540°	0	
720°	1	



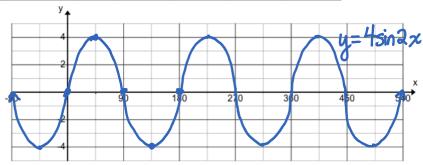
3. Graph $y = 4 \sin 2x$ on the grid below

-(graph the original function as well):

Amplitude: 4 Period: 180

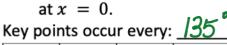
Key points every: 45°

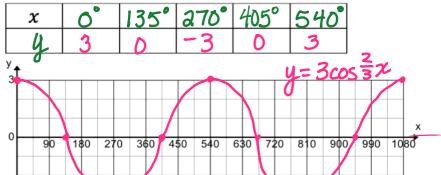
x	0°	45°	90°	135°	180°
4sin 2x	0	4	0	-4	0



U6D4 Practice: Page 374 #2 (all – just in degrees, not radians), 3 – 6 (b only), 8b (typo – max is at 3), 10c, 11bc, 12c

- $k = \frac{360^{\circ}}{540^{\circ}} = \frac{2}{3}$ 4. A cosine function has an amplitude of 3 and a period of 540°.
- a) Determine the equation of the function: $y=3\cos\frac{2}{3}x$
- b) Sketch 2 cycles of this function, beginning with a point





U6D4 Practice: Page 374 #2 (all – just in degrees, not radians), 3 – 6 (b only), 8b (typo – max is at 3), 10c, 11bc, 12c