Recall: When a trig function was vertically stretched (or compressed), the key idea was the fact that the function's \qquad was altered. Notice that if a graph is stretched/compressed vertically, a measurement on the y-axis is changed.
So, if we stretch/compress a graph horizontally, a measurement on the x -axis is changed.
From the graph of a trig function, what is the key term measured on the x -axis?

In general:

Transformations that applied to $\mathrm{f}(\mathrm{x})$, also apply to trig functions:

$$
\text { For functions in the form } y=\operatorname{sinkx} \text { or } y=\operatorname{coskx} \text {, }
$$

- If $\mathbf{k}>1$, the graphs are horizontally compressed by a factor of $\frac{\mathbf{1}}{\boldsymbol{k}}$
- If $0<k<1$, the graphs are horizontally stretched by a factor of $\frac{1}{k}$
- Amplitude is unchanged
- Period becomes $\frac{360^{\circ}}{k} \Rightarrow k=\frac{360^{\circ}}{\text { Period }}$

Graphing Horizontal stretches/compressions using the 5-Point Graphing Method

When we have a horizontal stretch/compression, the period is altered, therefore our 5 key points will also be altered. Remember that the 5 key points divided our period into quarters...therefore, divide the new period by 4 and you will have the locations of the new 5 key points (the amplitude is unchanged, so our y-values will remain the same)

1. Graph $y=\sin x$ and $y=\sin 3 x$ on the grid below.

Recall the 5
Key Points of $y=\sin x$

X	$\sin X$

Period of $y=\sin 3 x$ is \qquad
Therefore, our 5 key points will occur every \qquad .

2. Graph $y=\cos x$ and $y=\cos \frac{1}{2} x$ on the grid below:

Period of $y=\cos \frac{1}{2} x$ is: \qquad . Key points every \qquad .

x	$\cos x$
0°	
90°	
180°	
270°	
360°	

x	$\cos \frac{1}{2} x$

3. Graph $y=4 \sin 2 x$ on the grid below

Amplitude: \qquad . Period: \qquad . Key points every: \qquad .

x					
$4 \sin 2 x$					

4. A cosine function has an amplitude of 3 and a period of 540°.
a) Determine the equation of the function:

Key points occur every: \qquad

x					

