U6D3_T_Vert Stretch Trig

Thursday, May 2, 2019 6:48 PM

U6D3_T_Ve rt Stretch ...

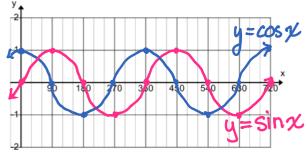
U6D3 MCR 3UI <u>Vertical Stretches of Periodic Functions</u>

5-Point Graphing Method

Rather than using a table of many values to determine the general shape of a trig function, a convenient, 5-point method can be used when you know the functions amplitude and period.

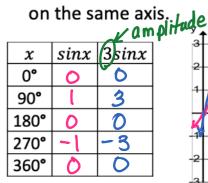
In *sine* and *cosine* graphs, there are 5 key points that one can use to graph. These key points occur at angle values of 0°, 90°, 180°, 270° and 360°

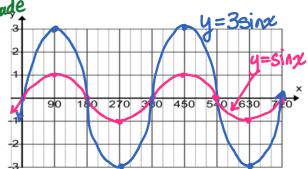
One reason why these are key points is because, each cycle of a sine or cosine function includes a maximum, a minimum and three zeros.


Notice that the angle values are equally spaced apart. The key points split the function's period into quarters: $\frac{360^{\circ}}{4} = 90^{\circ}$ (key points occur every 90°)

The "Sinusoidal Axis" is the horizontal line halfway between the maximum and the minimum.

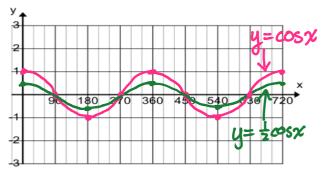
Example 1:


Use the 5-Point method to graph the sine and cosine functions for 2 periods.


x	sinx	cosx
0°	0	
90°		D
180°	0	-1
270°	-	0
360°	٥	1

Vertical Stretch

Complete the table of values and graph both curves on the same axis



How do the amplitudes of each graph relate to each other? A vertical stretch of 3 triples the amplitude. Amplitude equals the vertical $y = a \sin x$ Stretch/compression factor. Amplitude = |a|

Vertical Compression

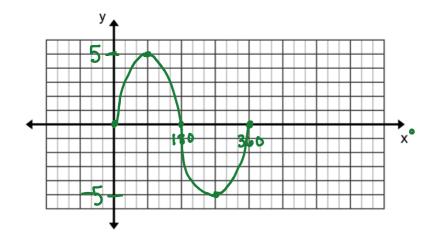
Complete the table of values and graph both curves on the same axis.

x	cosx	$\frac{1}{2}cosx$
0°		<u> </u>
90°	0	0
180°	-	-12
270°	0	0
360°		7

How do the amplitudes relate to each other?

$$y = \cos x$$
 Amplitude = 1
 $y = \frac{1}{2}\cos x$ Amplitude = $\frac{1}{2}$

In general:


Transformations that applied to f(x), also apply to trig functions:

For functions in the form $y = a sinx \ or \ y = a \ cos x$,

- If a > 1, the graphs are vertically stretched by a factor of a
- If 0 < a < 1, the graphs are vertically <u>compressed</u> by a factor of **a**
- Amplitude becomes a . (max is a, min is -a)
- Period is unchanged.

Example: Grap one cycle of $y = 5 \sin x$.

NOTE: NO arrows if graphing only one cycle.

U6D3 Practice: p. 374 #1, 7a, 10a, 11a