Suppose you are on a Ferris wheel that has a radius of 50 m . It takes 1 minute to complete a full revolution. If you get on the wheel at base $(0,0)$, graph your distance above the ground for two minutes. Use the table of values to assist you. (you will need to visualize yourself getting into a Ferris wheel and determining your height every 15 seconds)

| Time(s) | Height(m) |
| ---: | :--- |
| 0 | 0 |
| 15 | 50 |
| 30 |  |
| 45 |  |
| 60 |  |
| 75 |  |
| 90 |  |
| 105 |  |
| 120 |  |



This graph/function (height as a function of time) is said to be periodic. That means the function has a pattern of $y$-values that repeat at regular intervals.

On the graph above, the y-value of 100 m repeats itself every $\qquad$ seconds.

If there is no pattern of y-values that repeat themselves, the function is not periodic.
One full completed pattern is called a cycle. (A cycle may begin at any point on the graph and is measured until the pattern starts to repeat itself).

The horizontal length of one cycle is called the period of the function. The period of the function above is $\qquad$ seconds.

In any periodic function, the amplitude of the function is defined as half of the difference between the max yvalue and the minimum $y$-value. The amplitude of the above graph is $\qquad$ m .

In general, a function $f$ is periodic if there exists a positive number $p$, such that the value of $f(x+p)=$ value of $f(x)$, for every $x$ in the domain.

$$
f(x+p)=f(x) \text {, where } p \text { is the length of the period }
$$

6-1
Using your graph, when $x=15$ seconds, the height $($ or $f(x))$ is 50 m . We said the period length, $p=$ $\qquad$ .

So,

$$
f(15 \text { seconds })=50 \text { metres }
$$

$$
f(15)=50
$$

If it's periodic, then $f(15+p)$ should equal 50 .
Does it? $\qquad$ (Add $p$ to 15 , and read off its corresponding height from the graph)

## Examples



Time ( s )
i) $f(6)=$
ii) $f(21)=$
iii) $f(45)=$
iv) $f(30)=$
b)

Amplitude $=$ $\qquad$ Equation of Axis $=$

Period $=$ $\qquad$
So, $f(x)=f(x+k[$ Notice: $f(180)=$

, $f(90)=$

Find the value of:
i) $f(540)=$
ii) $f(3690)=$
iii) $f(4410)=$
iv) $f(-540)=$

Examples: Determine if the following graphs are periodic. If so, determine the period length and amplitude for each.
1.

2.


