1. a) 0.990 b) -2.356 c) -0.559 d) -1.006 e) 3.072 f) -1.327 2. a) $\sin \theta = \frac{12}{13}$, $\cos \theta = -\frac{5}{13}$, $\tan \theta = -\frac{12}{5}$

 $\csc \theta = \frac{13}{12}, \sec \theta = -\frac{13}{5}, \cot \theta = -\frac{5}{12}$

b) $\sin \theta = \frac{3}{5}$, $\cos \theta = -\frac{4}{5}$, $\tan \theta = -\frac{3}{4}$ $\csc \theta = \frac{5}{3}$, $\sec \theta = -\frac{5}{4}$, $\cot \theta = -\frac{4}{3}$

c) $\sin \theta = \frac{8}{17}$, $\cos \theta = -\frac{15}{17}$, $\tan \theta = -\frac{8}{15}$

 $\csc \theta = \frac{17}{8}$, $\sec \theta = -\frac{17}{15}$, $\cot \theta = -\frac{15}{4}$

3. a) $-\frac{1}{2}$ b) $\frac{1}{2}$ c) -1 d) 2 e) $-\sqrt{2}$

f) $\frac{1}{\sqrt{2}}$ g) $-\sqrt{3}$ h) $-\frac{1}{\sqrt{3}}$ i) $\frac{\sqrt{3}}{2}$ j) $-\sqrt{3}$ k) $\sqrt{2}$ i) -2 4. a) -0.34b) -0.09 c) 1.49 d) -3.08 e) 0.62f) -0.18 g) -2.37 h) -0.84 i) 3.86j) -0.77 k) -1.00 l) 0.98

c) 120°

g) 135° k) 135°

c) 105°

g) 152°

k) 141° l) 172°

h) 120°

d) 145°

1) 135°

h) 102°

c) 100°, 280° r) 25°, 205°

i) 255°, 285°

k) 75°, 105° l) 160°, 340°

b) 120°

f) 150°

j) 150°

b) 125°

c) $-\frac{2}{\sqrt{77}}$, 103° d) -2, 1 e) $\frac{\sqrt{10}}{3}$, 108° f) $\frac{28}{53}$, 148°

9. a) $\sin (180^{\circ} + \theta) = -\frac{y}{r} \csc (180^{\circ} + \theta) = -\frac{r}{r}$

 $\cos (180^{\circ} + \theta) = -\frac{\pi}{r}; \sec (180^{\circ} + \theta) = -\frac{r}{r}$

b) $\sin (360^{\circ} - \theta) = -\frac{y}{r} \csc (360^{\circ} - \theta) = -\frac{r}{r}$

 $\tan (180^{\circ} + \theta) = \frac{y}{x} \cot (180^{\circ} + \theta) = \frac{x}{y}$

 $\cos (360^{\circ} - \theta) = \frac{x}{15}; \sec (360^{\circ} - \theta) = \frac{7}{15}$

10. a) $-\frac{1}{\sqrt{2}}$ b) $-\frac{1}{2}$ c) $\sqrt{3}$ d) -1 e) $-\sqrt{3}$ f) $\sqrt{2}$ g) -1 h) -2 11. a) 65°, 115° b) 128°, 232° c) 100° d) 200°, 340° e) 55°, 305° f) 25°, g) 145°, 325° h) 150°, 210° i) 25°

 $\tan (360^{\circ} - \theta) = -\frac{y}{x}; \cot (360^{\circ} - \theta) = -\frac{x}{y}$

e) 145° f) 112° i) 97° j) 113°

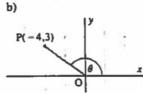
8. a) $-\frac{\sqrt{13}}{2}$, 124°

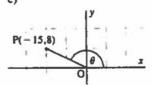
ANSWERS:

d) $-\frac{20}{29}, \frac{29}{21}$

6. a) 135°

e) 150°


7. a) 115°


i) 150°

Worksheet Extra Practice Trig Ratios of ANY Angles

- 1. Use a calculator to find the value of each trigonometric ratio to 3 decimal places. a) sin 98° b) tan 113° c) cos 124° d) sec 174° e) csc 161° f) cot 143°
- 2. For each obtuse angle θ , state the six trigonometric ratios.

P(-5,12)

- 3. Evaluate each trigonometric ratio. Give exact answers.
 - a) cos 120° b) sin 150° c) cot 135° d) csc 150° e) sec 135° f) sin 135°
 - g) tan 120° h) cot 120° i) sin 120° j) cot 150° k) csc 135° l) sec 120°
- 4. Evaluate each trigonometric ratio to 2 decimal places.
 - a) cos 110° b) cot 95° c) csc 138° d) tan 108° e) sin 142° f) tan 170°
 - g) sec 115° h) cot 130° i) csc 165° j) cos 140° k) sec 175° l) sin 100°
- 5. Given θ is an obtuse angle and the value of one trigonometric ratio, find the other trigonometric ratios.

 - a) $\sin \theta = \frac{15}{17}$; find $\tan \theta$ and $\sec \theta$ b) $\tan \theta = -\frac{7}{24}$; find $\cos \theta$ and $\csc \theta$
 - c) sec $\theta = -\frac{13}{5}$; find sin θ and cot θ d) cot $\theta = -\frac{20}{21}$; find cos θ and csc θ
 - e) $\cos \theta = -\frac{40}{41}$; find $\sin \theta$ and $\cot \theta$ f) $\csc \theta = \frac{5}{4}$; find $\tan \theta$ and $\sec \theta$
- 6. Find each value of θ if θ is obtuse.

- a) $\sin \theta = \frac{1}{\sqrt{2}}$ b) $\sec \theta = -2$ c) $\tan \theta = -\sqrt{3}$ d) $\cos \theta = -\frac{1}{\sqrt{2}}$
- e) $\csc \theta = 2$ f) $\cot \theta = -\sqrt{3}$ g) $\cot \theta = -1$ h) $\sin \theta = \frac{\sqrt{3}}{2}$
- i) $\cos \theta = -\frac{\sqrt{3}}{2}$ j) $\sec \theta = -\frac{2}{\sqrt{3}}$ k) $\tan \theta = -1$ l) $\csc \theta = \sqrt{2}$
- 7. Find each value of θ to the nearest degree if θ is obtuse.
 - a) $\sin \theta = 0.906$
- b) $\cos \theta = -0.574$
- c) $\tan \theta = -3.732$

- d) cot $\theta = -1.428$
- e) $\csc \theta = 1.743$
- f) $\sec \theta = -2.669$

- g) $\tan \theta = -0.532$
- h) $\sin \theta = 0.978$
- i) $\cot \theta = -0.123$

- j) $\csc \theta = 1.086$
- k) $\cos \theta = -0.777$
- 1) $\sec \theta = -1.010$
- 8. Given θ is an obtuse angle and the value of one trigonometric ratio, find the other trigonometric ratio, and θ to the nearest degree.
 - a) $\sin \theta = \frac{3}{\sqrt{13}}$; find $\sec \theta$ and θ
- b) cot $\theta = -\frac{3}{7}$; find cos θ and θ
- c) $\cos \theta = -\frac{2}{6}$; find $\cot \theta$ and θ d) $\csc \theta = \frac{\sqrt{5}}{2}$; find $\tan \theta$ and θ
- e) $\tan \theta = -3$; find $\csc \theta$ and θ
- f) $\sec \theta = -\frac{53}{45}$; find $\sin \theta$ and θ
- 9. If θ is an acute angle defined by P(x,y), use x, y, and r to define the six b) $(360^{\circ} - \theta)$. trigonometric ratios of: a) $(180^{\circ} + \theta)$
- 10. State the value of each ratio exactly. Draw a diagram to illustrate each angle.
 - a) sin 225°
- b) cos 240°
- c) cot 210°

- d) sin 270°
- e) tan 300°
- f) sec 315°

- g) cos 180°
- h) csc 330°
- i) sec 360°
- 11. State two values of θ to the nearest degree for each trigonometric ratio.
 - a) $\sin \theta = 0.906$
- b) $\cos \theta = -0.616$
- c) $\tan \theta = -5.671$

- d) $\csc \theta = -2.924$
- e) $\sec \theta = 1.743$
- f) $\cot \theta = 2.145$

- g) $\tan \theta = -0.700$
- h) $\sec \theta = -1.155$
- i) $\sin \theta = -0.966$

- i) $\cos \theta = -0.423$
- k) $\csc \theta = 1.035$
- 1) $\cot \theta = -2.747$