U4D7_T Stretch, Compress and Combine Transformations of Exponential Functions

8
8
pof

U4D7_T

Stretch, C...

U4D7 MCR3UI Transformations of Exponential Functions

1. Match each transformation with the corresponding equation, using $f(x)=10^{x}$ as the base. Not all transformations will match an equation.

Transformation $\frac{1}{3}$	Equation
a) Horizontal stretch factor $3 \longrightarrow y=10^{3}$	A $y=10^{x}+3$
b) Shift 3 units up	B $y=10^{x+3}$
d) Vertical compression factor $\frac{1}{3} G$	C $y=-10^{x}$
e) Vertical stretch factor $3 \quad y=3(10)^{x}$	D $y=10^{x}-3$
f) Shift 3 units right $y=10^{x-3}$	E $y=10^{3 x}$
g) Reflect in x-axis C	F $y=10^{-x}$.reflection
h) Shift 3 units down i) Horizontal compression factor $\frac{1}{3} E$	$\text { G } y=\left(\frac{1}{3}\right)^{\text {in } y-a x 15}$

2. Given the function defined by the equation : $y=2(3)^{4(x-2)}+7$
a) State the base/parent function.
b) Is this function increasing or decreasing?

$$
f(x)=3^{x}
$$

increasing
c) Describe the transformations (in order) to the exponential function compared to the parent function. Use the technical vocabulary you have learned this year.
Vertical Stretch factor 2
Horizontal Compression factor $\frac{1}{4}$
Shift right 2 , up 7
t (translation)
d) State the y-intercept.

$$
\begin{aligned}
& y=2(3)^{4(-2)}+7 \\
& y=\frac{2}{3^{8}}+7 \\
& y=7.0003^{0} 7 \frac{2}{3561}
\end{aligned}
$$

e) State the equation of the asymptote.

$$
y=7
$$

f) State the domain and range of this function.
D: $\{x \in \mathbb{R}\}$
$R:\{y>7\}$
$y=7^{+} \leftarrow$ may write this if you read info. from a
3. Given $f(x)=3^{x}$, graph $y=\frac{1}{2}(3)^{\frac{1}{2} x}$ and describe the transformations.

1. Vertical Compression factor $\frac{1}{2}$
2. Horizontal Stretch

3. a) Identify the transformations of $f(x)=2^{x}$ that will produce the graph of $y=-f(-2 x+6)+5$, and determine the new equation.
(1) reflection in x-axis
(2) reflection in y-axis
(3) horizontal Compression factor $\frac{1}{2}$
(4) shift right 3 , up 5 units.

$$
\begin{aligned}
& y=-2^{-2 x+6}+5 \\
& y=-\left(2^{-2(x-3)}+5\right.
\end{aligned}
$$

b) Graph the transformation. Label the final graph with its equation.

5. Apply the appropriate transformations to the exponential function to graph the following and state the domain and range.

$$
\begin{gathered}
y=-2\left(\frac{1}{2}\right)^{3-x}+6 \\
y=-2\left(\frac{1}{2}\right)^{-(x-3)}+6
\end{gathered}
$$

(1) reflect in x-axis,
(2) Vertical Stretch factor 2
(3) reflect in y-axis
(4) shift right 3 , up 6

$$
\begin{array}{ll}
\mathrm{D}: 1 & x \in \mathbb{R} \\
\mathrm{R}: 1 & y<6
\end{array}
$$

