U4D5_T Determining Equations of Exponential Functions

U4D5 T Determini..

U4D5 MCR3UI

Graphing Exponential Functions and Determining Exponential Equations

 of the form $\mathrm{y}=\mathrm{a}(\mathrm{b})^{\mathrm{x}}$
Warm Up:

Simplify.

$$
\begin{aligned}
& \text { a) }\left(\frac{2 x^{2}}{y z^{3}}\right)^{2}\left(\frac{y^{2} z^{3}}{2 x^{4}}\right)^{3} \\
& =\frac{(2)^{2}\left(x^{2}\right)^{2}}{\left(y^{2}\left(z^{3}\right)^{3}\right.} \times \frac{\left(y^{3}\right)^{3}\left(z^{3}\right)^{3}}{(2)^{3}\left(x^{4}\right)^{3}} \\
& =\frac{4 x^{4} y^{6} z^{9}}{8 x^{12} y^{2} z^{6}} \\
& =\frac{y^{4} z^{3}}{2 x^{8}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\left(y^{x-1}\right)\left(y^{2 x+5}\right)}{y^{3 x-1}} \\
= & \frac{y^{(x-1)+(2 x+5)}}{y^{(3 x-1)}} \\
= & y^{3 x+4-(3 x-1)} \\
= & y^{5}
\end{aligned}
$$

d) $y=\frac{1}{8}(2)^{n-1}$
$y=(2)^{-3}(2)^{n-1}$

$$
y=2^{-3+n-1}
$$

$$
y=2^{n-4}
$$

$$
\text { e) } \begin{array}{rl}
y=12(3)^{n+2} & \text { f) } y=\frac{(2)^{n-1}(4)^{n}}{(8)^{n-4}} \\
y=4(3)^{\prime}(3)^{n+2} & y=\frac{2^{n-1}\left(2^{2}\right)^{n}}{\left(2^{3}\right)^{n-4}} \\
y=4(3)^{n+3} & y=\frac{2^{n-1+2 n}}{2^{3 n-12}} \\
y & =2^{3 n-1-(3 n-12)} \\
y & =2^{11} \\
y & =2048 .
\end{array}
$$

Graphing Base Exponential Functions

Determining the Equation of an Exponential Function

1. Complete the chart to compare the effect of changing the value of a in $y=a\left(2^{x}\right)$.

2. Summary: Exponential Equations of the form $y=a(b)^{x}$

3. Determine the exponential equation in the form $y=a(b)^{x}$, for the given
graphs.
a)

$$
a=2 \quad(y-i n t)
$$

x	y
0	2
1	$z_{>}>3$
2	$18>3$

$$
a=2, b=3
$$

$$
\begin{aligned}
& y=a(b)^{x} \\
& 6=2(b)^{1} \\
& 3=b \\
& a=2, b=3
\end{aligned}
$$

$$
y=2(3)^{x}
$$

b)

c)

x	$y=a(b)^{x}$	
-2	y	
-1	$12>\times \frac{1}{2}$	$6=3(b)^{-1}$
0	3	$6 \times x \frac{1}{2}$
0	$(2)^{-1}=\left(b^{-1}\right)^{-1}$	

$$
a=3, b=\frac{1}{2} \quad \frac{1}{2}=b, a=3
$$

4. Write an Exponential Function given the properties within each situation below:
i) A bacteria colon doubles every hour. The initial population contained 5 bacteria. Write a function to relate the population of bacteria to the time, in hours.
$P(t)=5(2)^{t}$, where P is the population of bacteria, t is the time in hours.
ii) A radioactive sample has a half-life of 3 days. The initial sample is 200 ng . Write a function to relate the amount remaining, in milligrams, to the time, in days. Then, determine the range for the radioactive sample.

