U4D3 T
Solving Ex...

U4D3 MCR3UI Solving Exponential Equations

Warm Up: Simplify.

$$
\text { a) } \begin{aligned}
& 3^{x} \cdot 3^{4} \\
= & 3^{x+4}
\end{aligned}
$$

radical

$$
\begin{aligned}
& \begin{aligned}
\text { exponential } & =\left(x^{4}\right)^{\frac{1}{10}}\left(y^{6}\right)^{\frac{1}{10}} \\
\text { form } & =x^{\frac{2}{5}} y^{\frac{3}{5}}
\end{aligned}=\frac{(\sqrt[3]{27})^{2}}{(\sqrt[3]{125})^{2}} \\
& z^{2}
\end{aligned}
$$

(0)
Solving Exponential Equations
$=\frac{3^{2}}{5^{2}}$
$=\frac{9}{25}$
Method 1: Using a common base
If there is a common base, you can equate the exponents. This gives a linear equation that you can solve.
a) $\begin{aligned} 4^{x} & =4^{5} \\ x & =5\end{aligned}$
b) $2^{x+3}=2^{2 x-1}$
$\begin{aligned} x+3 & =2 x-1 \\ x-2 x & =-1-3 \\ -x & =-4 \\ x & =4\end{aligned}$

x	2^{x+3}	$2^{2 x-1}$
1	2^{4}	2^{1}
2	2^{5}	2^{3}
4	2^{7}	$2^{7} \therefore x=4$

Method 1 con't: If the bases are NOT the same, you can either make them the same (This is not required for the grade 11 curriculum) OR
Method 2: you can use a table of values to figure out the value of the unknown (trial and error).
c) $3^{x}=27$

$$
3^{x}=3^{3}
$$

$x=3$
d) $4^{3 \mathrm{k}}=64$ note:

Method 1: $\quad 64=4^{3}$
e) $4^{x}=8^{x-1} \quad$ rewrite

Method 1: ${ }^{4}!8$ as
Method 1: powers of 2 Method 2:

$$
\begin{gathered}
\left(2^{2}\right)^{x}=\left(2^{3}\right)^{x-1} \\
2^{2 x}=2^{3 x-3} \begin{array}{l}
\text { use exponent } \\
\text { rules to } \\
\text { simplify }
\end{array} \\
2 x=3 x-3 \text { equate exponents } \\
x=3 \quad \text { isolate } x
\end{gathered}
$$

x	4^{x}	8^{x-1}
0	4^{0}	8^{-1}
5	$4^{5}=1024$	$8^{4}=4096$

$\left.3 \quad 4^{3}=64\right) 8^{2}=64$

$$
\therefore x=3
$$

Examples Involving Rationals
a) $3^{3 x-1}=\frac{1}{81} \frac{1}{81}=3^{-4}$
b) $27\left(3^{3 x+1}\right)=9$

$$
\begin{array}{cc|c|}
3^{3 x-1}=3^{-4} & x & 3^{3 x-1} \\
3 x-1=-4 & 0 & 3^{-1} \\
3^{-3-1}=3^{-4}=\frac{1}{81} \\
3 x=-3 & -2 & \therefore \\
x=-1 & \therefore x=-1
\end{array}
$$

$$
\begin{aligned}
& 7\left(3^{3 x+1}\right)=9 \\
& 3^{3 x+1}-9 \div 27
\end{aligned}
$$

$$
=\frac{1}{27}
$$

$$
3^{3 x+1}=\frac{1}{3}
$$

$$
3^{3 x+1}=3^{-1}
$$

$$
3 x+1=-1
$$

$$
3 x=-2
$$

$$
x=-\frac{2}{3}
$$

$$
\begin{aligned}
& \text { c) } \left.2\left(5^{k+1}\right)=1250\right) \div 2 \\
& 27\left(3^{3 x+1}\right)=9 \\
& \div 25 \quad 5^{k+1}=625^{2 \div 2} \quad 3^{3}\left(3^{3 x+1}\right)=3^{2} \\
& 5^{k+1}=5^{4} \quad \begin{array}{l|l}
k & 2\left(5^{k+1}\right) \\
1 & n\left(\pi^{2}\right)-50
\end{array} 3^{3 x+1+3}=3^{2}=3^{2}
\end{aligned}
$$

$$
\begin{array}{ll|lr}
5^{k+1}=5^{4} & k & 2\left(5^{k+1}\right) & 3=4 \\
k+1=4 & 1 & 2\left(5^{2}\right)=50 & 3^{3 x+4}=3^{2} \\
k=3 & 2 & 2\left(5^{3}\right)=250 & 3 x+4=2 \\
& 3 & 2\left(5^{4}\right)=1250 & 3 x=-2 \\
& \therefore k=3 & x=-\frac{2}{3}
\end{array}
$$

Example Involving Common Factor RECAL:

$$
\begin{aligned}
& x^{5}-x^{2} \\
= & x^{2}\left(x^{3}-1\right)
\end{aligned}
$$

x	$3^{x+2}-3^{x}$
1	$3^{3}-3^{1}=27-1 x$

2
$3^{4}-3^{2}=81-9 x$
(3) $3^{5}-3^{3}=243-27$

$$
\therefore x=3
$$

$$
\begin{aligned}
& 3^{x+2}-3^{x}=216 \\
& \text { tor } 3^{x}\left(3^{2}-3^{0}\right)=216 \\
& \text { miry } \\
& 3^{x}(9-1)=216 \\
& \div 8\binom{3^{x}(8)=216}{3^{x}=27} \div 8 \\
& 3^{x}=3^{3} \\
& x=3
\end{aligned}
$$

