## Special Angles - 30 and 60

Construct an Equilateral triangle with side lengths 2. Drop a vertical line from the top angle to the opposite side creating two Right-Triangles. The altitude will bisect the opposite side since it is an equilateral triangle. Determine the length of the altitude using the Pythagorean Theorem.

$\sin 30^{\circ}=$
$\cos 30^{\circ}=$
$\tan 30^{\circ}=$
$\sin 60^{\circ}=$
$\cos 60^{\circ}=$
$\tan 60^{\circ}=$

Special Angles: 45
Construct an Isosceles Right-Triangle and determine all 3 trig ratios of the non-90 angle. (Tip:
The equal side lengths are 1 unit each)

$\sin 45^{\circ}=$
$\cos 45^{\circ}=$
$\tan 45^{\circ}=$

NOTE: You should memorize these triangles/ratios, or at least be able to construct them! These angles will be used frequently.

For each of the following examples, complete WITHOUT a calculator!
Example 1: Determine the exact values of the three primary trig ratios of:
a) $120^{\circ}$
b) $210^{\circ}$
c) $135^{\circ}$

Example 2: Determine the exact value of $\sec ^{2} 60^{\circ}-\tan 45^{\circ} \sin 30^{\circ}$
Example 3: If $0^{\circ} \leq \theta \leq 360^{\circ}$, determine all possible measures of angle $\theta$ when: $\quad \cos \theta=-\frac{1}{\sqrt{2}}$

Example 4: If $0^{\circ} \leq A \leq 360^{\circ}$, find the possible measures of angle A when: $\tan A=-1$

