U5D5 MCR3UI THE CAST RULE AND SPECIAL ANGLES

Special Angles - 30 and 60

Construct an Equilateral triangle with side lengths 2. Drop a vertical line from the top angle to the opposite side creating two Right-Triangles. The altitude will bisect the opposite side since it is an equilateral triangle. Determine the length of the altitude using the Pythagorean Theorem.

sin30° =

 $\cos 30^{\circ} =$

tan30° =

sin60° =

 $\cos 60^{\circ} =$

tan60° =

Special Angles: 45

Construct an Isosceles Right-Triangle and determine all 3 trig ratios of the non-90 angle. (Tip: The equal side lengths are 1 unit each)

sin45° =

 $\cos 45^{\circ} =$

tan45° =

NOTE: You should memorize these triangles/ratios, or at least be able to construct them! These angles will be used frequently.

For each of the following examples, complete WITHOUT a calculator!

Example 1: Determine the exact values of the three primary trig ratios of: a) 120° b) 210° c) 135°

Example 2: Determine the exact value of $sec^260^\circ - tan45^\circ sin30^\circ$

Example 3: If $0^{\circ} \le \theta \le 360^{\circ}$, determine all possible measures of angle θ when: $\cos \theta = -\frac{1}{\sqrt{2}}$

Example 4: If $0^{\circ} \le A \le 360^{\circ}$, find the possible measures of angle A when: $\tan A = -1$