CAST

Given angle θ formed by a terminal arm in standard position. (For standard position the "initial arm" is the positive x axis, the terminal arm is found by joining the origin to the point, the angle θ is the angle measured from the initial arm rotating counter-clockwise to the terminal arm.)

If we have a Point in Quadrant I with $x>0, y>0$:

$r=\sqrt{x^{2}+y^{2}}$ The square root sign means take the "principal square root" which means the positive square root so r is always positive.
$\sin \theta=\frac{y}{r}$
$\cos \theta=\frac{x}{r}$
Note: All three ratios are positive in Quadrant I

$$
0^{\circ}<\theta<90^{\circ}
$$

$\tan \theta=\frac{y}{x}$
$\sin \theta>0, \cos \theta>0, \tan \theta>0$

If our Point was in Quadrant II with $x<0, y>0$:

θ is the "principal angle"
$\boldsymbol{\beta}$ is the "related acute angle"
$\sin \theta=\frac{y}{r}$
$\cos \theta=\frac{x}{r}$
$\tan \theta=\frac{y}{x}$
Since $r>0$ and in Quadrant II, $x<0$ and $\mathrm{y}>0$,

Sine is the only positive ratio in quadrant II $90^{\circ}<\theta<180^{\circ}$
$\sin \theta>0, \cos \theta<0, \tan \theta<0$

θ is the "principal angle"
$\boldsymbol{\beta}$ is the "related acute angle"
$\sin \theta=\frac{y}{r}$
$\cos \theta=\frac{x}{r}$
$\tan \theta=\frac{y}{x}$
Since $\mathrm{r}>0$ and in Quadrant III, $x<0$ and $y<0$,

Tangent is the only positive ratio in quadrant III $180^{\circ}<\theta<270^{\circ}$
$\sin \theta<0, \cos \theta<0, \tan \theta>0$

If our Point was in Quadrant IV with $x>0, y<0$:

$\boldsymbol{\theta}$ is the "principal angle"
$\boldsymbol{\beta}$ is the "related acute angle"
$\sin \theta=\frac{y}{r} \quad$ Since $r>0$ and in Quadrant IV, $\cos \theta=\frac{x}{r} \quad \mathrm{x}>0$ and $\mathrm{y}<0$,
$\tan \theta=\frac{y}{x}$

Cosine is the only positive ratio in quadrant IV $270^{\circ}<\theta<360^{\circ}$
$\sin \theta<0, \cos \theta>0, \tan \theta<0$

NOTE: θ is measured from the positive x-axis, rotating counter-clockwise to the terminal arm. However, to use simple trigonometric ratios, we need a Rignt-Triangle, hence we place β, the related acute angle between the x-axis and the terminal arm. In this way, we form a right-triangle with the terminal arm and the x-axis with β as the reference angle inside the triangle.

II
Sin only positive $90^{\circ}<\theta<180^{\circ}$ $\sin \left(180^{\circ}-\theta\right)=\sin \theta$ $\cos \left(180^{\circ}-\theta\right)=-\cos \theta$ $\tan \left(180^{\circ}-\theta\right)=-\tan \theta$

Tan only positive $180^{\circ}<\theta<270^{\circ}$ $\sin \left(180^{\circ}+\theta\right)=-\sin \theta$ $\cos \left(180^{\circ}+\theta\right)=-\cos \theta$ $\tan \left(180^{\circ}+\theta\right)=\tan \theta$

I

Cos only positive $270^{\circ}<\theta<360^{\circ}$ $\sin \left(360^{\circ}-\theta\right)=-\sin \theta$ $\cos \left(360^{\circ}-\theta\right)=\cos \theta$ $\tan \left(360^{\circ}-\theta\right)=-\tan \theta$

The CAST rule:
To determine whether a trig ratio will be positive or negative, you may use the CAST rule.

If you know which quadrant θ lies in then...

Example 1: The point $P(-3,-6)$ lies on the terminal arm of an angle θ in standard position. a) Determine the exact values of $\sin \theta, \cos \theta$ and $\tan \theta$.
b) Determine the principal angle, θ.

Example 2: Find θ if $\cos \theta=-0.6784$, and $0^{\circ} \leq \theta \leq 180^{\circ}$.

Example 3: Angle θ is in standard position in quadrant II and $0^{\circ} \leq \theta \leq 360^{\circ}$. Given the trig ratio, find:
a) the exact values of the other two trig ratios. $\sin \theta=\frac{3}{4}$
b) the principal angle, θ

Example 4: Find θ if $\tan \theta=-0.5238$, if $0^{\circ} \leq \theta \leq 360^{\circ}$.

U5D4 Homework: \# p. 281 \#1, 4, p. 348 \#1abef + principal angle, \#2abef + principal angle, \#6, (Where it says $0 \leq \theta \leq 2 \pi$ treat as $0 \circ \leq \theta \leq 360$) 0 , p. $348 \# 1$ a) $\cos \theta=\frac{8}{17}$ (book error)

