Sine Law and Cosine Law (For Oblique Triangles)

If you do not have a Right-Angle triangle (if the triangle is oblique), you must either use the Sine Law or the Cosine Law to solve the triangle.

Let's say that the only knowledge we have is for SOH...we need a 90 degree angle.
You don't need to write out the proof - it is in your textbook.
Example 1:
In $\triangle P Q R, P=105^{\circ}, p=26 \mathrm{~cm}$, and $r=15 \mathrm{~cm}$. Solve the triangle.

Cosine Law

$a^{2}=b^{2}+c^{2}-2 b c \cos A$ Or to Find an Angle:

$$
\begin{aligned}
& \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c} \\
& \cos B= \\
& \cos C=
\end{aligned}
$$

Note: To use Cosine Law, you need either:

- $\quad 2$ sides and the angle between the sides OR
- all 3 sides

What Math property do you think was used to create the Cosine Law? (Proof: Textbook page 286-287)
Example 2: In $\triangle E F D, e=6.7 \mathrm{~cm}, \mathrm{~d}=18.8 \mathrm{~cm}$, and $F=42$ degrees. Solve the triangle.

Example 3: Airport X is due East of Airport Y. An aircraft is 23° North of due West and 240 km from airport Y. The angle of elevation from Airport X to the aircraft is 14°. How far apart are airport X and Airport Y? Round your answer to the nearest tenth of a kilometre.

