

1. Match each transformation with the corresponding equation, using $f(x) = 10^{x}$ as the base. Not all transformations will match an equation.

Transformation	Equation
	Lquation
a) Horizontal stretch factor 3	A $y = 10^{X} + 3$
b) Shift 3 units up	- 10X+3
c) Shift 3 units left	$B y = 10^{10}$
d) Vertical compression factor $\frac{1}{3}$	C $y = -10^{x}$
e) Vertical stretch factor 3	D $y = 10^{x} - 3$
f) Shift 3 units right	$E y = 10^{3x}$
g) Reflect in x-axis	$F_{\rm V} = 10^{-X}$
h) Shift 3 units down	y = 10
i) Horizontal compression factor $\frac{1}{3}$	$G y = \left(\frac{1}{3}\right) 10^{x}$

- 2. Given the function defined by the equation : $y = 2(3)^{4(x-2)} + 7$
- a) State the base/parent function. b) Is this function increasing or decreasing?
- c) Describe the transformations (in order) to the exponential function compared to the parent function. Use the technical vocabulary you have learned this year.

d) State the y-intercept.

- e) State the equation of the asymptote.
- f) State the domain and range of this function.

3. Given $f(x) = 3^x$, graph $y = \frac{1}{2}(3)^{\frac{1}{2}x}$ and describe the transformations.

4. a) Identify the transformations of $f(x) = 2^x$ that will produce the graph of y = -f(-2x + 6) + 5, and determine the new equation.

y =

- b) Graph the transformation.Label the final graph with its equation.
- 5. Apply the appropriate transformations to the exponential function to graph the following and state the domain and range.

$$y = -2\left(\frac{1}{2}\right)^{3-x} + 6$$

$$y =$$