Warm Up: a) $\left(2 a^{2} b c^{3}\right)\left(-6 a^{4} b c\right)^{-2}$
b) $\left(\frac{16}{81}\right)^{-\frac{3}{4}}$

Exploring Properties of Exponential Functions Investigation:

1. Complete the following tables.
i)

x	$y=x$
0	
1	
2	
3	
4	
5	
6	

ii) | x | $y=2 x$ |
| :--- | :--- |
| 0 | |
| 1 | |
| 2 | |
| 3 | |
| 4 | |
| 5 | |
| 6 | |

iii)

x	$y=x^{2}$
0	
1	
2	
3	
4	
5	
6	

iv)

x	$y=2^{x}$
0	
1	
2	
3	
4	
5	
6	

2. Which pattern is growing:
a) Fastest?
b) Slowest?

3. Complete the First and second differences.

x	$y=x$	$\begin{array}{c\|} \hline \text { First } \\ \text { Differences } \end{array}$	
0	0		Second Differences
1	1		
	2		
2			
	3		
3			
4	4		
	5		
5			
6	6		

4. What do you notice about the finite differences?
5. Complete the following tables.
ii)

6. How do $y=3^{x}$ and $y=0.5^{x}$ compare with $y=2^{x}$?
7. Complete the following chart.

	$y=2^{x}$	$y=3^{x}$	$y=0.5^{x}$
Domain			
Range			
x-intercepts?			
y-intercept			
Interval of increase			
Interval of decrease			
Description of graph			
Sketch of graph Asymptotes ?			

8. Sam's mom told him that if he consistently does all of his chores, each day she will give him double the amount that was given the previous day. She gives him $\$ 0.50$ the first day.
(a) Assuming Sam does his chores consistently, how much money will his mom give him on the fourth day?
(b) Sam is saving up to buy a new $\$ 300$ graphics card for his computer. On what day can he buy his graphics card?

Properties of Exponential Functions:

- As the independent variable increases by a constant amount, the dependent variable increases by a \qquad
\qquad . (As the independent variable increases by one, the dependent variable increases by a \qquad
\qquad equal to the
\qquad of the exponential function.)
- The \qquad of consecutive finite differences is a constant.
- For bases \qquad than 1, the graph \qquad at a constant rate (the slope of the graph gets steeper as x increases)
- For bases \qquad 0 and 1 , the graph \qquad at a constant rate (the slope of the graph gets less steep as x increases)
- $b^{0}=1$, for all $b \in R, b \neq 0$

