Simplify.
a) $3^{x} \cdot 3^{4}$
b) $\sqrt{\sqrt[5]{x^{4} y^{6}}}$

Solving Exponential Equations

Method 1: Using a common base
If there is a \qquad base, you can \qquad the exponents. This gives a linear equation that you can \qquad .
a) $4^{x}=4^{5}$
b) $2^{x+3}=2^{2 x-1}$

Method 1 con't: If the bases are NOT the \qquad , you can either make them the same OR
Method 2: you can use a \qquad to figure out the value of the unknown (trial and error).
c) $3^{x}=27$
d) $4^{3 \mathrm{k}}=64$

Method 1:
Method 2:
e) $4^{x}=8^{x-1}$

Method 1:
Method 2:

Examples Involving Rationals:
a) $3^{3 x-1}=\frac{1}{81}$
b) $27\left(3^{3 x+1}\right)=9$
c) $2\left(5^{k+1}\right)=1250$

Example Involving Common Factor:
$3^{x+2}-3^{x}=216$

