$$
a^{n}
$$

An expression of the form a^{n} is called a \qquad _.

Positive Integral Exponent

$$
\mathrm{a}^{\mathrm{n}}=
$$

Negative Integral Exponent

$$
a^{-n}=
$$

Zero Exponent

$$
\mathrm{a}^{0}=
$$

Law for...	General Form	Example
Multiplication of powers	$x^{m} \cdot x^{n}=$	$5^{4} \cdot 5^{7}=$
Division of Powers	$\frac{x^{m}}{x^{n}}=$	$\frac{4^{6}}{4^{2}}=$
Power of a Power	$\left(x^{m}\right)^{n}=$	$\left(6^{5}\right)^{2}=$
Power of a Product	$(x y)^{n}=$	$(3 y)^{3}=$
Power of a Quotient	$\left(\frac{x}{y}\right)^{n}=$	$\left(\frac{3}{2}\right)^{4}=$

Example 1. Simplify. Express your answer with positive exponents
a) $x^{-3} \cdot x^{-5}$
b) $m^{2} \div m^{-3}$
c) $\frac{a^{5} b^{3}}{a^{2} b^{2}}$
d) $\left(-2 c^{3} d^{-5} e\right)^{2}$
e) $\left(4 x^{3} y^{2}\right)\left(7 x^{2} y^{4}\right)$
f) $\left(\frac{3 x^{2}}{z^{3}}\right)^{2}$
g) $\frac{\left(2 x^{-2} y\right)^{3}}{10 x^{-4} y^{-3}}$
h) $\frac{\left(-2 x^{-3} y\right)\left(-12 x^{-4} y^{-2}\right)}{6 x y^{-3}}$

Example 2. Evaluate. Answers should be left as reduced fractions (decimal answers are not acceptable). Do not use a calculator!!!
a) $\left(\frac{3}{4}\right)^{-2}$
b) $\frac{(-6)^{0}}{2^{-3}}$
c) $\frac{2^{-4}+2^{-6}}{2^{-3}}$
d) $\frac{3^{-5}}{3^{-4}+3^{-3}}$

