MCR3UI Unit 4 Lesson 1

## **Exponent Laws**

**1.** Multiplication Law:  $x^m \times x^n = x^{m+n}$ 

When multiplying powers with the same base, keep the base the same and add the exponents.

Ex 1. 
$$x^3 \times x^2$$
 (Note:  $x^3 \times x^2 = x \cdot x \cdot x \cdot x \cdot x$ ) Ex. 2  $2^3 \times 2^4$   
=  $x^{3+2}$  =  $2^{3+4}$   
=  $x^5$  =  $2^7$  = 128

2. Division Law:  $x^m \div x^n = x^{m-n}$ 

When dividing powers with the same base, keep the base the same and subtract the exponents.

Ex. 1 
$$x^5 \div x^2$$
 Ex. 2  $2^4 \div 2^3$  Note:  $2^4 \div 2^3$   
 $= x^{5-2}$   $= 2^{4-3}$   $= \frac{2^4}{2^3}$   
 $= x^3$   $= 2^1$   $= \frac{2 \cdot 2 \cdot 2 \cdot 2}{2 \cdot 2 \cdot 2}$   
 $= 2$ 

3. Power of a Power Law:  $(x^m)^n = x^{m \times n}$ 

If a power is raised to an exponent, multiply the exponents.

Ex. 
$$(x^3)^2 = x^{3\times 2}$$
  
 $= x^6$   
A. Power of a Product Law:  $(x \cdot y)^m = x^m y^m$ 

NOTE: This rule does NOT apply to the power of a sum or difference!

Ex. 1 
$$(x \cdot y)^5 = x^5 y^5$$
  
=  $(3x^5 y^3)^2$   
=  $(3)^2 (x^5)^2 (y^3)^2$   
=  $9x^{10} y^6$ 

**NOTE:** There is no "Sum of a Power Rule" or "Difference of a Power Rule".  $(a + b)^n \neq a^2 + b^2$  (note: the <u>does not equal</u> sign above!)

## 5. Power of a Quotient Law: $\left(\frac{x}{y}\right)^m = \frac{x^m}{y^m}$

If a Quotient is raised to an exponent, distribute the exponent to every factor in the numerator and denominator.

Ex. 1 
$$\left(\frac{x}{y}\right)^2 = \left(\frac{x}{y}\right)\left(\frac{x}{y}\right)$$
 Ex. 2  $\left(\frac{2}{3}\right)^2$  Ex. 3  $\left(\frac{2x^3}{3y^2}\right)^3 = \frac{(2)^3(x^3)^3}{(3)^3(y^2)^3}$   
 $= \frac{x^2}{y^2}$   $= \frac{2^2}{3^2}$   $= \left(\frac{8x^9}{27y^6}\right)$   
 $= \frac{4}{9}$ 

## 6. Zero Exponents: $x^0 = 1$

Any power with an exponent of zero is equal to one.

Ex. 1 
$$(-2)^0 = 1$$
 Ex. 2  $-2^0 = -(2^0)$  Ex. 3  $(-237x^3y^7)^0 = 1$   
=  $-1$ 

Proof:

| 7. Negative Exponents: $x^{-m} = \frac{1}{x^m}$ |                  |
|-------------------------------------------------|------------------|
| =1 So                                           | $3^0 = 1$        |
| = $\frac{9}{9}$ =                               | 3 <sup>0</sup>   |
| $=\frac{3\times3}{3\times3}$                    | 3 <sup>2–2</sup> |
|                                                 | $b^2 \div 3^2$   |

A negative in the exponent of a power means to 'flip the base' or 'take the reciprocal'. A negative exponent has nothing to do with the sign of the number.

Ex. 1 
$$x^{-2} = \frac{1}{x^2}$$
 Ex. 2  $4^{-2} = \frac{1}{4^2}$  Ex. 3  $\left(\frac{4}{5}\right)^{-3} = \left(\frac{5}{4}\right)^3$  Ex. 4  $\left(\frac{1}{3}\right)^{-2} = \left(\frac{3}{1}\right)^2$   
=  $\frac{5^3}{4^3}$  =  $3^2$   
Ex. 4 Simplify first, then evaluate using x = 2. =  $\frac{125}{64}$  = 9

= 9

Ex. 4 Simplify first, then evaluate using x = 2.



**Example 1:** Simplify. Leave answers with only positive exponents.

a) 
$$a^{5} \times a^{2} \times a$$
 b)  $(n^{2})^{3}$  c)  $\left(\frac{y^{2}}{y^{3}}\right) \times y^{-6} \times y^{0}$  d)  $2a^{-3}$  e)  $(4a)^{-2}$   
=  $a^{5^{+2+1}}$  =  $n^{6}$  =  $y^{-1-6+0}$  =  $\frac{2}{a^{3}}$  =  $\frac{1}{(4)^{2}(a)^{2}}$   
=  $a^{8}$  =  $\sqrt{7}$  =  $\frac{1}{16a^{2}}$   
=  $\frac{1}{y^{7}}$   
f)  $\frac{y^{0}}{2a^{-3}}$  g)  $(4a^{3}c^{2})^{3}(-3ac^{-4})^{2}$  h)  $\frac{x^{7y+1}}{x^{7y-6}}$  i)  $\frac{3^{-1}}{x^{0}+2^{3}}$ ,  $x \neq 0$  j)  $\frac{2^{-5}+2^{-3}}{2^{-4}}$   
=  $\frac{1}{2a^{-3}}$  =  $(4)^{3}(a^{3})^{3}(c^{2})^{3}(-3)^{2}(a)^{2}(c^{-4})^{2}$  =  $x^{(7y+1)-(7y-6)}$  =  $\frac{2^{-5}}{2^{-4}} + \frac{2^{-3}}{2^{-4}}$   
=  $\frac{1}{2} \times \frac{a^{3}}{1}$  =  $64 \times 9a^{9}a^{2}c^{6}c^{-8}$  =  $x^{1+6}$  =  $2^{-5+4} + 2^{-3+4}$   
=  $\frac{a^{3}}{2}$  =  $576a^{11}c^{-2}$  =  $x^{7}$  =  $2^{-1} + 2$   
=  $\frac{576a^{11}}{c^{2}}$  =  $2\frac{1}{2}$   
OR  $\frac{2^{-5}+2^{-3}}{2^{-4}} \times \frac{2^{5}}{2^{5}}$   
=  $\frac{2^{0}+2^{2}}{2}$   
=  $\frac{1+4}{2}$   
=  $\frac{5}{2}$   
There are still other ways

to correctly evaluate

this question using exponent laws

Example 2: What is the volume of the cube with side lengths of  $x^{-2}y$ ?

V = s<sup>3</sup>, where s is the side length of the cube. V =  $(x^{-2}y^{3})^{3}$ =  $x^{-6}y^{9}$ =  $\frac{y^{9}}{x^{6}}$  Use your calculator to evaluate: a)  $9^{\frac{1}{2}}$ b)  $49^{\frac{1}{2}}$ c)  $625^{\frac{1}{4}}$ = 3
= 7
= 5 Note:  $\sqrt{9} = 3$   $\sqrt{49} = 7$   $\sqrt[4]{625} = 5$   $\therefore 9^{\frac{1}{2}} = \sqrt{9}$  and  $625^{\frac{1}{4}} = \sqrt[4]{625}$ ; so the denominator of the exponent determines the "index" of the root.  $a^{\frac{1}{n}} = \sqrt[n]{a}$ , where "n" is called the "index", and "a" is called the "radicand". This is read as the "n<sup>th</sup> root of a". "What number to the exponent n will equal a?"

8. Powers of the form:  $\chi^{n}$ The exponent  $\frac{1}{n}$  means to take the n<sup>th</sup> root. i.e.  $\mathbf{X}^{\frac{1}{n}} = \sqrt[n]{\mathbf{X}}$ Ex. 2  $x^{\frac{1}{3}}$  Ex. 3  $x^{\frac{1}{12}}$  $x^{\frac{1}{2}}$ 81<sup>2</sup> Ex. 4 Ex 1.  $=\sqrt[2]{X}$  $=\sqrt[3]{x}$  $= \sqrt[12]{x}$  $=\sqrt{81}$  $=\sqrt{X}$ = 9Ex. 6  $(-64)^{\overline{4}}$  Ex. 7  $(64)^{\overline{3}}$ Ex. 5  $(-27)^3$ Ex. 8 (64)6  $=\sqrt[4]{-64}$  $=\sqrt[3]{-27}$  $=\sqrt[3]{64}$  $=\sqrt[6]{64}$ = -3 =not possible = 4 = 2 (You may take the odd root of a negative number but

you may **<u>not</u>** take the even root of a negative number)

MCR 3UI Unit 4 Lesson 2

Laws for Rational Exponents



## 9. Powers of the form: $X^n$

The exponent  $\frac{m}{n}$  means to take the n<sup>th</sup> root and raise the answer to an exponent m.

i.e.,  $x^{\frac{m}{n}} = (\sqrt[n]{x})^m = \sqrt[n]{(x^m)}^*$  the denominator of the exponent is the index of the root. Ex 1.  $x^{\frac{3}{4}}$  Ex. 2  $x^{\frac{2}{3}}$  Ex. 3  $81^{\frac{3}{4}}$  Ex. 4  $(-125)^{\frac{2}{3}}$   $= \sqrt[4]{x^3}$   $= \sqrt[3]{x^2}$   $= (\sqrt[4]{81})^3$   $= (\sqrt[3]{-125})^2$ Or  $= (\sqrt[4]{x})^3$  Or  $= (\sqrt[3]{x})^2$   $= (3)^3$   $= (-5)^2$ = 27 = 25

Ex. 5 
$$9^{\frac{3}{2}}$$
 Ex. 6  $9^{-2.5}$  Ex. 7  $\left(\frac{27}{8}\right)^{-\frac{2}{3}}$  Ex. 8  $\left(\frac{4}{25}\right)^{-\frac{3}{2}}$   
 $= (\sqrt{9})^3 = 9^{-\frac{5}{2}} = \left(\frac{8}{27}\right)^{\frac{2}{3}} = \left(\frac{25}{4}\right)^{\frac{3}{2}}$   
 $= 2^3 = \frac{1}{(\sqrt{9})^5} = \frac{(\sqrt{25})^3}{(\sqrt{27})^2} = \frac{(\sqrt{25})^3}{(\sqrt{4})^3}$   
 $= 8 = \frac{1}{3^5} = \frac{2^2}{3^2} = \frac{5^3}{2^3}$   
 $= \frac{4}{9} = \frac{125}{8}$