1. Multiplication Law: $x^{m} \times x^{n}=x^{m+n}$

When multiplying powers with the same base, keep the base the same and add the exponents.
Ex 1. $x^{3} \times x^{2}$
$\left(\right.$ Note: $\left.x^{3} \times x^{2}=x \cdot x \cdot x \cdot x \cdot x\right)$
Ex. $2 \quad \begin{array}{ll}2^{3} \times 2^{4} \\ & =2^{3+4} \\ & =2^{7} \\ & =128\end{array}$
$=x^{3+2}$
$=x^{5}$

$$
=128
$$

2. Division Law: $x^{m} \div x^{n}=x^{m-n}$

When dividing powers with the same base, keep the base the same and subtract the exponents.
Ex. $1 \quad x^{5} \div x^{2}$
Ex. $2 \quad 2^{4} \div 2^{3}$
$=x^{5-2}$
$=2^{4-3}$
Note: $2^{4} \div 2^{3}$
$=\frac{2^{4}}{2^{3}}$
$=x^{3}$
$=2^{1}$
$=\frac{2 \cdot 2 \cdot 2 \cdot 2}{2 \cdot 2 \cdot 2}$
$=2$
3. Power of a Power Law: $\left(x^{m}\right)^{n}=x^{m \times n}$

If a power is raised to an exponent, multiply the exponents.

$$
\text { Ex. }\left(x^{3}\right)^{2}=x^{3 \times 2} \quad \text { NOTE: }\left(x^{3}\right)^{2}=\left(x^{3}\right)\left(x^{3}\right)
$$

4. Power of a Product Law: $(x \cdot y)^{m}=x^{m} y^{m}$

If a Product is raised to an exponent, distribute the exponent to each factor in the base.
NOTE: This rule does NOT apply to the power of a sum or difference!
Ex. $1 \quad(x \cdot y)^{5}=x^{5} y^{5}$
Ex. $2 \quad\left(3 x^{5} y^{3}\right)^{2}$

$$
\begin{aligned}
& =(3)^{2}\left(x^{5}\right)^{2}\left(y^{3}\right)^{2} \\
& =9 x^{10} y^{6}
\end{aligned}
$$

NOTE: There is no "Sum of a Power Rule" or "Difference of a Power Rule". $(a+b)^{n} \neq a^{2}+b^{2}$
(note: the does not equal sign above!)
5. Power of a Quotient Law: $\left(\frac{x}{y}\right)^{m}=\frac{x^{m}}{y^{m}}$

If a Quotient is raised to an exponent, distribute the exponent to every factor in the numerator and denominator.
Ex. $1\left(\frac{x}{y}\right)^{2}=\left(\frac{x}{y}\right)\left(\frac{x}{y}\right)$
Ex. $2\left(\frac{2}{3}\right)^{2}$
Ex. $3\left(\frac{2 x^{3}}{3 y^{2}}\right)^{3}=\frac{(2)^{3}\left(x^{3}\right)^{3}}{(3)^{3}\left(y^{2}\right)^{3}}$
$=\frac{x^{2}}{y^{2}}$
$=\frac{2^{2}}{3^{2}}$
$=\left(\frac{8 x^{9}}{27 y^{6}}\right)$
$=\frac{4}{9}$
6. Zero Exponents: $x^{0}=1$

Any power with an exponent of zero is equal to one.
Ex. $1(-2)^{0}=1$
Ex. $2 \quad-2^{0}=-\left(2^{0}\right)$
Ex. $3\left(-237 x^{3} y^{7}\right)^{0}=1$ $=-1$

Proof:
$3^{2} \div 3^{2}$
$3^{2} \div 3^{2}$
$=\frac{3 \times 3}{3 \times 3}$
$=3^{2-2}$
$=\frac{9}{9}$ $=3^{0}$
$=1$
So, $3^{0}=1$
7. Negative Exponents: $x^{-m}=\frac{1}{x^{m}}$

A negative in the exponent of a power means to 'flip the base' or 'take the reciprocal'. A negative exponent has nothing to do with the sign of the number.
Ex. $1 \quad x^{-2}=\frac{1}{x^{2}}$
Ex. $2 \quad 4^{-2}=\frac{1}{4^{2}}$
Ex. $3\left(\frac{4}{5}\right)^{-3}=\left(\frac{5}{4}\right)^{3}$
Ex. $4\left(\frac{1}{3}\right)^{-2}=\left(\frac{3}{1}\right)^{2}$
$=\frac{5^{3}}{4^{3}}$ $=3^{2}$
Ex. 4 Simplify first, then evaluate using $\mathrm{x}=2$.

$$
=\frac{125}{64}
$$

$$
=9
$$

$$
\begin{array}{ll}
\left(x^{-3}\right)\left(x^{2}\right)\left(x^{5}\right) & \text { When } x=2 \\
=x^{-3+2+5} & =2^{4} \\
=x^{4} & =16
\end{array}
$$

Example 1: Simplify. Leave answers with only positive exponents.
a) $a^{5} \times a^{2} \times a$
b) $\left(n^{2}\right)^{3}$
c) $\left(\frac{y^{2}}{y^{3}}\right) \times y^{-6} \times y^{0}$
d) $2 a^{-3}$
e) $(4 a)^{-2}$
$=a^{5+2+1}$
$=\mathrm{n}^{6}$
$=y^{-1-6+0}$
$=\frac{2}{a^{3}}$
$=\frac{1}{(4)^{2}(a)^{2}}$
$=y^{-7}$
$=\frac{1}{16 a^{2}}$

$$
=a^{8}
$$

$$
=\frac{1}{y^{7}}
$$

$$
\begin{aligned}
& \text { f) } \frac{y^{0}}{2 a^{-3}} \\
& \text { g) }\left(4 a^{3} c^{2}\right)^{3}\left(-3 a c^{-4}\right)^{2} \\
& \text { h) } \frac{x^{7 y+1}}{x^{7 y-6}} \quad \text { i) } \frac{3^{-1}}{x^{0}+2^{3}}, x \neq 0 \\
& \text { j) } \frac{2^{-5}+2^{-3}}{2^{-4}} \\
& =\frac{1}{2 a^{-3}}=(4)^{3}\left(\mathrm{a}^{3}\right)^{3}\left(\mathrm{c}^{2}\right)^{3}(-3)^{2}(\mathrm{a})^{2}\left(\mathrm{c}^{-4}\right)^{2}=x^{(7 y+1)-(7 y-6)} \quad=\frac{2^{-5}}{2^{-4}}+\frac{2^{-3}}{2^{-4}} \\
& =\frac{1}{2} \times \frac{a^{3}}{1}=64 \times 9 a^{9} a^{2} c^{6} c^{-8} \quad=x^{1+6} \quad=2^{-5+4}+2^{-3+4} \\
& =\frac{a^{3}}{2} \quad=576 a^{11} c^{-2} \\
& =x^{7} \\
& =2^{-1}+2 \\
& =\frac{576 a^{11}}{c^{2}} \\
& =2 \frac{1}{2} \\
& \text { OR } \quad \frac{2^{-5}+2^{-3}}{2^{-4}} \times \frac{2^{5}}{2^{5}} \\
& =\frac{2^{0}+2^{2}}{2} \\
& =\frac{1+4}{2} \\
& =\frac{5}{2}
\end{aligned}
$$

There are still other ways to correctly evaluate this question using exponent laws

Example 2: What is the volume of the cube with side lengths of $x^{-2} y$? $V=s^{3}$, where s is the side length of the cube.

$$
\begin{aligned}
V & =\left(x^{-2} y^{3}\right)^{3} \\
& =x^{-6} y^{9} \\
& =\frac{y^{9}}{x^{6}}
\end{aligned}
$$

Use your calculator to evaluate:
a) $9^{\frac{1}{2}}$
b) $49^{\frac{1}{2}}$
c) $625^{\frac{1}{4}}$
$=3$
Note: $\sqrt{9}=3$
$=7$
= 5
$\sqrt{49}=7$
$\sqrt[4]{625}=5$
$\therefore 9^{\frac{1}{2}}=\sqrt{9}$ and $625^{\frac{1}{4}}=\sqrt[4]{625}$; so the denominator of the exponent determines the "index" of the root.
$a^{\frac{1}{n}}=\sqrt[n]{a}$, where " n " is called the "index", and " a " is called the "radicand". This is read as the " nth root of a ". "What number to the exponent n will equal a ?"
8. Powers of the form: $x^{\frac{1}{n}}$

The exponent $\frac{1}{n}$ means to take the $\mathrm{n}^{\text {th }}$ root. i.e. $x^{\frac{1}{n}}=\sqrt[n]{x}$
Ex 1. $x^{\frac{1}{2}}$
Ex. $2 x^{\frac{1}{3}}$
Ex. $3 x^{\frac{1}{12}}$
Ex. $481^{\frac{1}{2}}$
$=\sqrt[2]{x}$
$=\sqrt[3]{x}$
$=\sqrt[12]{x}$
$=\sqrt{81}$
$=\sqrt{x}$
$=9$

Ex. $5 \begin{aligned} & (-27)^{\frac{1}{3}} \\ & =\sqrt[3]{-27} \\ & =-3\end{aligned}$
Ex. $6 \quad(-64)^{\frac{1}{4}}$
Ex. $7 \quad(64)^{\frac{1}{3}}$
Ex. $8 \quad(64)^{\frac{1}{6}}$
$=\sqrt[4]{-64}$
$=\sqrt[3]{64}$
$=\sqrt[6]{64}$
$=$ not possible
$=4$
$=2$
(You may take the odd root of a negative number but you may not take the even root of a negative number)

MCR 3UI Unit 4 Lesson 2
Laws for Rational Exponents
Evaluate: $\begin{aligned} & \\ & 8^{\frac{2}{3}} \\ &=\left(8^{\frac{1}{3}}\right)^{2} \\ &=(\sqrt[3]{8})^{2} \\ &= 2^{2} \\ &= 4\end{aligned} \quad$ Undo' the Power of a Power Law
9. Powers of the form: $x^{\frac{m}{n}}$

The exponent $\frac{m}{n}$ means to take the $\mathrm{n}^{\text {th }}$ root and raise the answer to an exponent m .
i.e., $x^{\frac{m}{n}}=(\sqrt[n]{x})^{m}=\sqrt[n]{\left(x^{m}\right)}$ * the denominator of the exponent is the index of the root.
Ex 1. $x^{\frac{3}{4}}$
Ex. $2 x^{\frac{2}{3}}$
Ex. $381^{\frac{3}{4}}$
Ex. $4(-125)^{\frac{2}{3}}$
$=(\sqrt[4]{81})^{3}$
$=(\sqrt[3]{-125})^{2}$
Or $=(\sqrt[4]{x})^{3}$
Or $=(\sqrt[3]{x})^{2}$
$=(3)^{3}$
$=(-5)^{2}$
$=27=25$

Ex. $5 \quad 9^{\frac{3}{2}}$
Ex. $6 \quad 9^{-2.5}$
Ex. $7 \quad\left(\frac{27}{8}\right)^{-\frac{2}{3}}$
Ex. $8\left(\frac{4}{25}\right)^{-\frac{3}{2}}$

$$
\begin{array}{ll}
=(\sqrt{9})^{3} & =9^{-\frac{5}{2}} \\
=2^{3} & =\frac{1}{(\sqrt{9})^{5}} \\
=8 & =\frac{1}{3^{5}} \\
& =\frac{1}{243}
\end{array}
$$

$$
=\left(\frac{8}{27}\right)^{\frac{2}{3}}
$$

$$
=\left(\frac{25}{4}\right)^{\frac{3}{2}}
$$

$$
=\frac{(\sqrt[3]{8})^{2}}{(\sqrt[3]{27})^{2}}
$$

$$
=\frac{(\sqrt{25})^{3}}{(\sqrt{4})^{3}}
$$

$$
=\frac{2^{2}}{3^{2}} \quad=\frac{5^{3}}{2^{3}}
$$

$$
=\frac{4}{9} \quad=\frac{125}{8}
$$

