U4D1 MCR3UI	Exponent Laws	UNITTEST: Thurs. April 18,20 Quiz: Monday, Aprii $8 / 19$
Integral Exponents		Positive Integral Exponent $a^{n}=$
a^{n}		Negative Integral Exponent $a^{-n}=$
An expression of the form a^{n} is called a ___.		Zero Exponent $a^{0}=$
Law for...	General Form	Example
Multiplication of powers	$x^{m} \cdot x^{n}=$	$5^{4} \cdot 5^{7}=$
Division of Powers	$\frac{x^{m}}{x^{n}}=$	$\frac{4^{6}}{4^{2}}=$
Power of a Power	$\left(x^{m}\right)^{n}=$	$\left(6^{5}\right)^{2}=$
Power of a Product	$(x y)^{n}=$	$(3 y)^{3}=$
Power of a Quotient	$\left(\frac{x}{y}\right)^{n}=$	$\left(\frac{3}{2}\right)^{4}=$

Example 1. Simplify. Express your answer with positive exponents
a) $x^{-3} \cdot x^{-5}$
b) $m^{2} \div m^{-3}$
c) $\frac{a^{5} b^{3}}{a^{2} b^{2}}$
d) $\left(-2 c^{3} d^{-5} e\right)^{2}$
e) $\left(4 x^{3} y^{2}\right)\left(7 x^{2} y^{4}\right)$
f) $\left(\frac{3 x^{2}}{z^{3}}\right)^{2}$
g) $\frac{\left(2 x^{-2} y\right)^{3}}{10 x^{-4} y^{-3}}$
h) $\frac{\left(-2 x^{-3} y\right)\left(-12 x^{-4} y^{-2}\right)}{6 x y^{-3}}$

Example 2. Evaluate. Answers should be left as reduced fractions (decimal answers are not acceptable). Do not use a calculator!!!
a) $\left(\frac{3}{4}\right)^{-2}$
b) $\frac{(-6)^{0}}{2^{-3}}$
c) $\frac{2^{-4}+2^{-6}}{2^{-3}}$
d) $\frac{3^{-5}}{3^{-4}+3^{-3}}$

$$
a^{\frac{m}{n}}=
$$

Think of \qquad as the \qquad and \qquad as the \qquad .
To Evaluate:
Either:

- Take the 'nth' \qquad of ' a ' and then raise the answer to the \qquad 'm' OR
- Raise 'a' to the \qquad ' m ' and then take the ' n th' \qquad of the answer
Remember all exponent laws apply when simplifying rational exponents.

Example 1: Evaluate....do not use a calculator!
a) $25^{\frac{3}{2}}$
b) $(-27)^{-\frac{1}{3}}$
c) $-9^{2.5}$
d) $4^{\frac{3}{2}} \div 16^{\frac{1}{4}}$

Example: Write using exponents, in fully simplified form.
a) $\sqrt[3]{\sqrt{2 x^{4}}}$
b) $\left(\sqrt[3]{a^{2} b^{4}}\right)^{5}$

Simplifying Expressions Using Exponent Laws

1. Simplify
a) $5 a^{-3} \times 8 a^{-9}$
b) $-24 c^{5} d^{3} \div 4 c^{8} d^{-3}$
C) $m^{2} n^{5} \times m^{3} n^{-7}$
d) $\left(\frac{24 c^{8} d^{5}}{-8 c^{2} d}\right)\left(\frac{15 c^{3} d^{9}}{18 c d^{5}}\right)$
e) $\frac{12 m^{5} n^{-2} \times 5 m^{-11} n^{6}}{15 m^{3} n^{-4}}$
f) $\left(x y^{\frac{2}{3}}\right)^{6} \div\left(x^{\frac{1}{2}} y^{\frac{1}{4}}\right)^{8}$
2. Write in radical form, then evaluate.
a) $81^{\frac{3}{4}}$
b) $16^{\frac{-3}{4}}$
c) $625^{0.75}$
d) $4^{-\frac{3}{2}}$
e) $8^{\frac{4}{3}}$
3. Evaluate. Do not convert fraction answers to decimals.
a) $\left(\frac{1}{9}\right)^{-\frac{3}{2}}$
b) $\left(-\frac{1}{32}\right)^{0.8}$
c) $\left(\frac{49}{25}\right)^{\frac{1}{2}}$
d) $\left(-\frac{27}{125}\right)^{\frac{4}{3}}$
e) $\left(\frac{625}{343}\right)^{0}$
4. Evaluate.
a) $32^{\frac{2}{5}} \times 243^{\frac{2}{5}}$
b) $64^{\frac{2}{3}} \times 125^{\frac{1}{3}}$
c) $4^{\frac{5}{2}} \times 81^{\frac{3}{4}}$
5. Simplify.
a) $a^{\frac{1}{2}} \times a^{\frac{1}{2}}$
b) $\left(n^{\frac{1}{2}}\right)^{-6}$
c) $x^{\frac{3}{2}} \div x^{-\frac{1}{4}}$
d) $\left(9 a^{4} b^{-2} \times 4 a^{2} b^{-6}\right)^{\frac{1}{2}}$
e) $8 m^{\frac{1}{3}} n^{\frac{-3}{2}}\left(-2 m^{\frac{-2}{3}} n^{\frac{1}{3}}\right)^{-4}$
6. Simplify.
a) $\frac{36 x^{-2} y^{3} z^{-4}}{12 x y^{-2} z^{-2}}$
b) $\sqrt{\frac{32 x^{-5} y^{2} \times 18 x^{2} y}{4 x y^{-3}}}$
c) $\left(\frac{3 x^{-2} y^{3}}{12 x y^{-1}}\right)\left(\frac{10 x^{4} y^{-2}}{5 x^{-1} y^{2}}\right)$
d) $\frac{8^{1-2 x} \times 4^{2 x+3}}{16^{2-3 x}}$
e) $\frac{16^{2 m-n} \times 9^{m+3 n}}{27^{m+n} \times 8^{m-n}}$
f) $\frac{5^{-200}-5^{-198}}{5^{-199}+5^{-200}}$
7. Simplify.
a) $\frac{\left(c^{a+b}\right)\left(c^{a-b}\right)}{c^{2}}$
b) $\frac{\left(x^{a}\right)^{2}\left(x^{b}\right)^{2}}{\left(x^{a+b}\right)\left(x^{a-b}\right)}$
c) $\frac{x^{2 a-b} \cdot x^{a-3 b}}{\left(x^{3 a+b}\right)^{-2}}$
d) $\frac{\left(m^{x-1}\right)\left(m^{2 x+5}\right)}{m^{3 x-1}}$
e) $\frac{3^{-6 a}+3^{-5 a}}{3^{-6 a}+3^{-7 a}}$
8. Evaluate.
a) $\left(5^{\frac{1}{2}}+2^{\frac{1}{2}}\right)\left(5^{\frac{1}{2}}-2^{\frac{1}{2}}\right)$
b) $\left(8^{\frac{2}{3}}-5^{\frac{1}{2}}\right)\left(8^{\frac{2}{3}}+5^{\frac{1}{2}}\right)$
9. Simplify.
a) $\left(\sqrt{49 y^{\frac{2}{m}}}\right)^{\frac{-1}{n}}$
b) $\sqrt[3]{\frac{m^{\frac{1}{2}} \sqrt{m n}}{\frac{1}{\sqrt{n}}}}$
c) $\left(\frac{\sqrt[4]{a^{2 n-1}} \times \sqrt[4]{a}}{\sqrt{a}}\right)^{2}$

ANSWERS:

1a) $\frac{40}{a^{12}}$
b) $\frac{-6 d^{6}}{c^{3}}$ c) $\frac{m^{5}}{n^{2}}$ d) $\frac{-5 c^{8} d^{8}}{2}$
e) $\frac{4 n^{8}}{m^{9}}$ f) $x^{2} y^{2}$
2a) 27
b) $\frac{1}{8} \quad$ c) 125
d) $\frac{1}{8} \quad$ e) 16

3a) 27 $\begin{array}{llll}\text { b) } \frac{1}{16} & \text { c) } \frac{7}{5} & \text { d) } \frac{81}{625} & \text { e) } 1\end{array}$

4a) 36 b) $80 \quad$ c) 864
5a) 1
b) $\frac{1}{n^{3}}$
c) $\frac{1}{x^{\frac{5}{4}}}$
d) $\frac{6 a^{3}}{b^{4}}$
e) $\frac{m^{3}}{2 n^{\frac{17}{6}}}$
6a) $\frac{3 y^{5}}{x^{3} z^{2}}$
b) $\frac{12 y^{3}}{x^{2}}$ c) $\frac{x^{2}}{2}$ d) $2^{10 x+1}$
e) $2^{5 m-n} 3^{3 n-m} \quad$ f -4

7a) $c^{2 a-2}$
b) $x^{2 b} \quad$ c) $x^{9 a-2 b}$
d) m^{5}
e) 3^{a}
8.a)3 b) 11

9a) $\frac{1}{7^{\frac{1}{n}} y^{\frac{1}{m n}}}$
b) $m^{\frac{1}{3}} n^{\frac{1}{3}} \quad$ c) a^{n-1}

Simplify.
a) $3^{x} \cdot 3^{4}$
b) $\sqrt{\sqrt[5]{x^{4} y^{6}}}$

Solving Exponential Equations

Method 1: Using a common base

If there is a \qquad base, you can \qquad the exponents. This gives a linear equation that you can \qquad .
a) $4^{x}=4^{5}$
b) $2^{x+3}=2^{2 x-1}$

Method 1 con't: If the bases are NOT the \qquad you can either make them the same OR
Method 2: you can use a \qquad to figure out the value of the unknown (trial and error).
c) $3^{x}=27$
d) $4^{3 k}=64$

Method 1:
Method 2:
e) $4^{x}=8^{x-1}$

Method 1:
Method 2:

Examples Involving Rationals:

a) $3^{3 x-1}=\frac{1}{81}$
b) $27\left(3^{3 x+1}\right)=9$
c) $2\left(5^{k+1}\right)=1250$

Example Involving Common Factor:
$3^{x+2}-3^{x}=216$

Pg. 23 \#1-6 (every other one for each questions), 9abe, 10abf
Warm Up: a) $\left(2 a^{2} b c^{3}\right)\left(-6 a^{4} b c\right)^{-2}$
b) $\left(\frac{16}{81}\right)^{-\frac{3}{4}}$
U4D4_MCR3UI

Exploring Properties of Exponential Functions Investigation:

1. Complete the following tables.
i)

x	$y=x$
0	
1	
2	
3	
4	
5	
6	

x	$y=2 x$
0	
1	
2	
3	
4	
5	
6	

iii)

x	$y=x^{2}$
0	
1	
2	
3	
4	
5	
6	

iv)

x	$y=2^{x}$
0	
1	
2	
3	
4	
5	
6	

2. Which pattern is growing:
a) Fastest?
b) Slowest?

3. Complete the First and second differences.

\times	$y=2 x$	First Differences	
0	0		Second Differences
1	2		
2	4		
3	6		
4	8		
5	10		
6	12		

| x | $y=2^{x}$ | First
 Diferences |
| :---: | :---: | :---: | :---: |
| 0 | 1 | |

4. What do you notice about the finite differences?
5. Complete the following tables.
ii)

6. How do $y=3^{x}$ and $y=0.5^{x}$ compare with $y=2^{x}$?
7. Complete the following chart.

	$y=2^{x}$	$y=3^{x}$	$y=0.5^{x}$
Domain			
Range			
x-intercepts?			
y-intercept			
Interval of increase			
Interval of decrease			
Description of graph			
Sketch of graph			
Asymptotes?			

8. Sam's mom told him that if he consistently does all of his chores, each day she will give him double the amount that was given the previous day. She gives him $\$ 0.50$ the first day.
(a) Assuming Sam does his chores consistently, how much money will his mom give him on the fourth day?
(b) Sam is saving up to buy a new $\$ 300$ graphics card for his computer. On what day can he buy his graphics card?

Properties of Exponential Functions:

- As the independent variable increases by a constant amount, the dependent variable increases by a \qquad (As the independent variable increases by one, the dependent variable increases by a \qquad equal to the
\qquad of the exponential function.)
- The \qquad of consecutive finite differences is a constant.
- For bases \qquad than 1, the graph \qquad at a constant rate (the slope of the graph gets steeper as x increases)
- For bases \qquad 0 and 1, the graph \qquad at a constant rate (the slope of the graph gets less steep as x increases)
- $b^{0}=1$, for all $b \in R, b \neq 0$

U4D5 MCR3UI

Graphing Exponential Functions and Determining Exponential Equations of the form $\mathrm{y}=\mathrm{a}(\mathrm{b})^{\mathrm{x}}$

Warm Up:

Simplify.
a) $\left(\frac{2 x^{2}}{y z^{3}}\right)^{2}\left(\frac{y^{2} z^{3}}{2 x^{4}}\right)^{3}$
b) $81^{-\frac{1}{2}} \div 27^{-\frac{2}{3}}$
c) $\frac{\left(y^{x-1}\right)\left(y^{2 x+5}\right)}{y^{3 x-1}}$
d) $y=\frac{1}{8}(2)^{n-1}$
e) $y=12(3)^{n+2}$
f) $y=\frac{(2)^{n-1}(4)^{n}}{(8)^{n-4}}$

Graphing Base Exponential Functions

$$
f(x)=2^{x}
$$

$$
g(x)=\left(\frac{1}{3}\right)^{x}
$$

Determining the Equation of an Exponential Function

1. Complete the chart to compare the effect of changing the value of a in $y=a\left(2^{x}\right)$.

	$f(x)=2^{x}$	$y=3(2)^{x}$	$y=0.5(2)^{x}$	$y=-(2)^{x}$	$y=-3(2)^{x}$
Domain					
Range					
y-intercept					
asymptote					
Inc./dec.					

2. Summary: Exponential Equations of the form $y=a(b)^{x}$

	$0<b<1$	$b>1$
$a>0$ (i.e. a is positive)	\qquad on $x \in R$ $D=\{$ \} $\mathrm{R}=\{$ \} Horizontal Asymptote: y-intercept: $y=$ \qquad	\qquad on $x \in R$ $D=\{$ \} $R=\{$ \} Horizontal Asymptote: y -intercept: $\mathrm{y}=$ \qquad
$a<0$ (i.e. a is negative)	\qquad on $x \in R$ $\mathrm{D}=\{$ \} $\mathrm{R}=\{$ Horizontal Asymptote: \qquad y-intercept: $y=$ \qquad	

3. Determine the exponential equation in the form $y=a(b)^{x}$, for the given graphs.

4. Write an Exponential Function given the properties within each situation below (solution on back):
i) A bacteria colony doubles every hour. The initial population contained 5 bacteria. Write a function to relate the population of bacteria to the time, in hours.
ii) A radioactive sample has a half-life of 3 days. The initial sample is 200 mg . Write a function to relate the amount remaining, in milligrams, to the time, in days. Then, determine the range for the radioactive sample.

Warm Up:
Describe the transformations that have occurred to $f(x)$ to obtain the following function:

$$
y=-f(x+3)-7
$$

If $f(x)=\frac{1}{x}$, what would be the horizontal and vertical asymptote equations for the transformed function above?

Translations and Reflections of Exponential Functions

1. Each function given below is a translation and/or reflection of the exponential function $f(x)=3^{x}$. For each of these transformations, write the equation as a transformation of $f(x)=3^{x}$ in function notation. Then, describe how $f(x)=3^{x}$ should be shifted and/or reflected to obtain the new graph of the transformed function.

Function	$y=3^{x}+1$	$y=3^{x-2}$	$y=3^{x+4}$
Function Notation			
Description of Transformation			

Function	$y=-3^{x}$	$y=3^{-x}$	$y=-3^{x+3}-1$
Function Notation			
Description of Transformation			

2. Draw the graph of $f(x)=\left(\frac{1}{2}\right)^{x}$ and the transformation $y=-f(x+3)-5$. What is the equation of the transformed function?

3. Given the original graph $y=2^{x}$ and each of the following four transformations, Describe each of the transformations and write the new equation.
a)

Description:

New Equation:
c)

Description:

New Equation:
b)

Description:

New Equation:
d)

Description:

New Equation:

General Equation of Exponential Functions:

$$
\begin{gathered}
y=a b^{k(x-d)}+c \\
a<0 \Rightarrow \text { reflection in x-axis } \\
k<0 \Rightarrow \text { reflection in } y \text {-axis } \\
d \Rightarrow \text { shift right/left }(\mathrm{d}>0 \Rightarrow \text { right, } \mathrm{d}<0 \Rightarrow \text { left }) \\
\mathrm{c} \Rightarrow \text { shift up/down }(\mathrm{c}>0 \Rightarrow \text { up, } \mathrm{c}<0 \Rightarrow \text { down })
\end{gathered}
$$

General Equation of an Exponential Function:

$a<0 \Rightarrow$ reflection in \qquad -axis
$k<0 \Rightarrow$ reflection in \qquad -axis

$$
0<\mid \text { a } \mid<1 \Rightarrow \text { Vertical Compression factor }
$$

$$
|a|>1 \Rightarrow \text { Vertical Stretch factor }
$$

$$
0<|\mathrm{k}|<1 \Rightarrow \text { Horizontal Stretch factor }
$$

$|k|>1 \Rightarrow$ Horizontal Compression factor
$d \Rightarrow$ shift right/left ($d>0 \Rightarrow$ \qquad $d<0 \Rightarrow$ \qquad
$c \Rightarrow$ shift up/down (c>0 \Rightarrow \qquad $c<0 \Rightarrow$ \qquad

1. Match each transformation with the corresponding equation, using $f(x)=10^{x}$ as the base. Not all transformations will match an equation.

Transformation	Equation
a) Horizontal stretch factor 3	A $y=10^{x}+3$
b) Shift 3 units up	B $y=10^{x+3}$
c) Shift 3 units left	C $y=-10^{x}$
d) Vertical compression factor $\frac{1}{3}$	D $y=10^{x}-3$
e) Vertical stretch factor 3	E $y=10^{3 x}$
f) Shift 3 units right	F $y=10^{-x}$
g) Reflect in x-axis	
h) Shift 3 units down	G $y=\left(\frac{1}{3}\right) 10^{x}$
i) Horizontal compression factor $\frac{1}{3}$	

2. Given the function defined by the equation: $y=2(3)^{4(x-2)}+7$
a) State the base/parent function.
b) Is this function increasing or decreasing?
c) Describe the transformations (in order) to the exponential function compared to the parent function. Use the technical vocabulary you have learned this year.
d) State the y-intercept.
e) State the equation of the asymptote.
f) State the domain and range of this function.
3. Given $f(x)=3^{x}$, graph $y=\frac{1}{2}(3)^{\frac{1}{2} x}$ and describe the transformations.

4. a) Identify the transformations of $f(x)=2^{x}$ that will produce the graph of $y=-f(-2 x+6)+5$, and determine the new equation.

5. Apply the appropriate transformations to the exponential function to graph the following and state the domain and range.

$$
y=-2\left(\frac{1}{2}\right)^{3-x}+6
$$

D: \{
R: \{
\}

U4D8 Warm Up:

A bacteria colony doubles every minute. If there are 10 bacteria in the colony initially, how many are there in 9 minutes?

re	

In general, for exponential growth / decay problems: where,
$f(x)$ is the \qquad value
a is the \qquad value
b is the \qquad (if $b>1$) $O R$
the \qquad (if $0<b<1$)
x is the number of \qquad or \qquad periods

Important Notes:
If a growth rate is given (as a percent), then the base of the power in the equation (b) can be obtained by
ex. A growth rate of 18% involves
Also, the units for the growth and decay rate and for the number of growth and decay periods
ex. monthly interest rate of 0.05%,

Growth Problem

1. Maryville had a population of about 7500 people in 2009 . It is expected that the town's population will increase 5\% each year.
a. What is the initial population?
b. What is the growth rate, r?
c. Write the algebraic model for this situation using the above information. Include let statements.
d. Use the model to predict the population in 2018.
e. In approximately what year will Maryville double its current population, assuming it continues to grow at this rate? Predict to the nearest tenth of a year.

Decay Problems

2. A 200 g sample of radioactive polonium- 210 has a half-life of 138 days. This means that every 138 days, the amount of polonium left in a sample is half of the original amount.
a. What is the rate of decay?
b. Determine an equation to model this situation. Include let statements.
c. Determine the mass that remains after 5 years.
d. How much polonium-210 was there 414 days ago?
e. Use your model to predict how long it would take for this 200g sample to decay to 110 g .
3. A new car costs $\$ 24,000$. It loses 18% of its value each year after it is purchased. This is called depreciation.
a. Write an equation that models the decay/decline of the investment. Include let statements.
b. Use the equation to determine the value of the automobile after 30 months.
c. If the car was purchased June 3, 2015, during what month would the cars value first fall below $\$ 10000$?

A: Exponent Laws \& Exponential Expressions

1) Evaluate.
$\left(\frac{5}{7}\right)^{-2}$
2) Rewrite in radical form and then evaluate.
$(-64)^{-\frac{2}{3}}$
3) Simplify and rewrite using positive exponents.

$$
\frac{\left(2 x^{-5} y^{3}\right)^{2}\left(-6 x^{4} y^{-1}\right)}{3 x y^{-7}}
$$

4) Rewrite in radical form and simplify.
5) Solve.
$\left(\sqrt[6]{27 a^{3} b^{4}}\right)^{2}$
$3^{2 k}=243$

B: Exponential Functions

1. List the transformations in the order they must be applied.

$$
f(x)=-\left(\frac{1}{3}\right)^{\left(\frac{1}{4} x+1\right)}-1
$$

2. Identify each table of values as linear, quadratic, or exponential. Show calculations to help explain/support your answer. For the exponential function(s) state whether it is growth or decay AND determine the equation.

x	y
-2	5.75
-1	5.3
0	4.85
1	4.4
2	3.95

x	y
-2	5.0625
-1	5.25
0	6
1	9
2	21

3. For $g(x)=\frac{1}{2}(4)^{-x}+2$

State the base/parent function
State the transformations in the order that they that must be applied

State the x and y-intercepts, and the equation of the asymptote

Graph the new function

State the domain and range

D:
R:
Is the function increasing or decreasing?

4. The town of Vanessa is growing exponentially at a rate of 4.5% each year.
a) If the population of Vanessa is now 15000 , how many people will be living there in 42 months?
b) How many years would it take for the population to quadruple? (accurate to nearest tenth of a year)
5. A 500 g sample of plutonium- 243 has a half-life of 12 days.
a) Determine an equation to model this situation.
b) Determine how many grams of plutonium- 243 remain after 6 weeks.
c) Determine how long it would take for only one-quarter of the original sample to remain. (accurate to the nearest day)

