Warm Up:

Describe the transformations that have occurred to $h(x)$ to obtain the function $y=-5 h\left(\frac{2}{3} x\right)$

If $(-1,4)$ is a point on the function $h(x)$, what would be the new point on the transformed function?

Combining Transformations

When a function has a combination of transformations, apply them in order left to right when in the form: $\quad y= \pm a f[\pm b(x-h)]+k$

1. Reflection in x-axis with Vertical Stretches and Compressions.
2. Reflection in y-axis with Horizontal Stretches and Compressions.
3. Translations (Horizontal and Vertical Shifts)

Example 1:

a) Describe, in order, how the graph of $y=-2 f(4(x-2))$ can be obtained from the graph of $y=f(x)$.
b) If (x, y) was a point on $f(x)$, what would the value of the coordinates be after the 4 transformations?

$$
(x, y) \rightarrow(\quad)
$$

Example 2:

Given $f(x)=x^{2}+3$
a) Describe how the graph of $y=-\frac{1}{2} f(2 x+6)-2$ can be obtained from $f(x)$.
*Firs \dagger
b) What is the new "image equation"?
c) Graph.

U3D8 Practice: p. 240 \#7(odd), 8-9(odd, sketch one from each), 14

