U3D7_T Transformations WITH STRETCHES

U3D7 T
Transfor...

U3D7 MC 3UI
Recall: State the characteristics of $y=-3(x-2)^{2}+4$.
Vertex $(2,4)$
Direction of opening down
Axis of symmetry $\quad x=2$
Domain $\{x \in \mathbb{R}\}$

$$
\text { Range }\{y \leq 4\}
$$

What would the graph of $y=(2 x)^{2}$ look like?
Using algebra, it simplifies to $y=2^{2} x^{2}$ or $y=4 x^{2} \ldots$ this horizontal change was simplified to look like a vertical stretch factor 4 .
Let's look at a table of values to see how x changed.

x	$y=x^{2}$
0	0
1	1
2	4
3	9

x	$y=(2 x)^{2}$	$y=4 x^{2}$
0	0	0
$1 / 2$	1	$4\left(\frac{1}{2}\right)^{2}=1$
1	4	$4(1)^{2}=4$
$\frac{3}{2}$	9	$4\left(\frac{3}{2}\right)^{2}=4\left(\frac{9}{4}\right)=9$

Notice: to get the same y-values, x is half as much when there is a two in front of the x.

U3D7

$\operatorname{Try} y=\left(\frac{1}{3} x\right)^{2}$

x	$y=x^{2}$
0	0
1	1
2	4
3	9

x	$\mathrm{y}=\left(\frac{1}{3} x\right)^{2}$
0	0
3	1
6	4
9	9

Notice: to get the same y-values, x is three fimes as much when there is a one-third in front of the x.

In General: $y=a f[b(x-h)]+k$
a is: a reflection in the x -axis when $\mathrm{a}<0$
a vertical stretch when $|a|>1$,
a vertical compression when $0<|a|<1$
\mathbf{b} is: a reflection in the \mathbf{y}-axis when $\mathrm{b}<0$ $\frac{1}{b}$ is the a horizontal stretch factor $\frac{1}{b}$ when $0<|b|<1$ a horizontal compression factor $\frac{1}{b}$ when $|\mathrm{b}|>1$ (or a horizontal compression by b when $|b|>1$)
Horizontal is opposite to what it looks like...
When $b=3$, it is a horizontal compression by 3 or a horizontal compression factor $1 / 3$ (divide by 3 or multiply by a third).
When $b=\frac{1}{3}$, it is a horizontal stretch factor 3 .

U3D7

Applying the transformations you have learned to the Root

Function.

a: $\quad y=a f(x)$
or

$$
y=a \sqrt{x}
$$

$b: \quad y=a f(b x)$
or $\quad y=a \sqrt{b x}$
$h: \quad y=a f[b(x-h)]$
or
$y=a \sqrt{b(x-h)}$
$k: \quad y=a f[b(x-h)]+k$
or
$y=a \sqrt{b(x-h)}+k$

U3D7
Describe the transformations to the Root function and apply them as necessary to graph the following equations. State the domain and range. ***Remember: When applying transformations, stretches and reflections must always be done before shifts.***

1. $y=-\sqrt{2 x}$

2. $f(x)=3 \sqrt{x}-1$

3. V. Stretch factor 3 y times 3
4. Shift down 1

D: $\{x \geq 0\}$

R: $\{y \geq-1\}$
3. $y=-4+\sqrt{3-3 x}$
$y=\sqrt{-3 x+3}-4$

* must
$y_{10}^{y} y=\sqrt{-3(x-1)}-4$ factored out.
(1) reflection in y-axis?
$\frac{-1}{3}(x)$
(2) H. Comp. factor $\frac{1}{3} \int \frac{-1}{3}(x)$

3. shift right 1\}
4. shift down 4$\}$

$$
\begin{aligned}
& \mathrm{D}:\{x \leq 1\} \\
& \mathrm{R}:\{y \geq-4\}
\end{aligned}
$$

4. $g(x)=\sqrt{\frac{1}{2}(x+4)}-5$

5. H. Stretch factor 2 (2*x)
6. shift left 4
7. shift down 5

D: $\{x \geq-4\}$
R: $\{y \geq-5\}$

State the domain and range for the following without graphing.

1. $y=\sqrt{\frac{1}{4} x}+2$
$D:\{x \geq 0\}$

$$
\begin{array}{cc}
\uparrow & \uparrow \\
4 x & y+2
\end{array}
$$

$R:\{y \geq 2\}$
2. $g(x)=3-\sqrt{x-2}$

$$
g(x)=\underset{-y+3 \quad-\sqrt{x-2}+3}{x+2}
$$

D: $\{x \geq 2\}$

$$
R:\{y \leq 3\}
$$

3. $h(x)=\sqrt{3 x-6}$ $h(x)=\sqrt{3(})$
$\frac{1}{3} x$
ing the transfo
ion $f(x)=\frac{1}{x}$
$D:\{x \geq 2\}$
$R:\{y \geq 0\}$

$$
\frac{1}{3} x+2
$$

Applying the transformations you have learned to the Reciprocal
Function $f(x)=\frac{1}{x}$
a: $y=a f(x) \quad$ or $\quad y=a\left(\frac{1}{x}\right)=\frac{a}{x}$
b: $y=a f(b x) \quad$ or $\quad y=\frac{a}{b x} \quad$ note: same $\begin{array}{r}a s \\ y=\left(\frac{a}{b}\right)\left(\frac{1}{x}\right)\end{array}$
h: $y=a f[b(x-h)] \quad$ or $\quad y=\frac{a}{b(x-h)}$
$k: \quad y=a f[b(x-h)]+k$ or $\quad y=\frac{a}{b(x-h)}+k$

Remember the graph of

$$
y=\frac{1}{x}
$$

Describe the transformations to the Reciprocal function and apply them as necessary to graph the following equations. State the domain and range.

1. $f(x)=\frac{3}{x-4}$

2. Vertical Stretch factor 3
3. shift right 4
$D:\{x \neq 4\}$
$R:\{y \neq 0\}$

U3D7
2. $g(x)=3-\frac{1}{2 x} \quad g(x)=\frac{-1}{2 x}+3$

1. reflection in x-axis 2. H. Compression factor $\frac{1}{2}$ 3. shift up 3

$$
\begin{aligned}
& \mathrm{D}:\{x \neq 0\} \\
& \mathrm{R}:\{y \neq 3\}
\end{aligned}
$$

State the domain and range for the following without graphing.
(Remember: asymptotes only move with shifts (L/R, U/D)

1. $y=\frac{1}{x+3}+8$

$$
\begin{aligned}
& D:\{x \neq-3\} \\
& R:\{y \neq 8\}
\end{aligned}
$$

2.

$$
f(x)=\frac{5}{x-9}-11
$$

$$
D:\{x \neq 9\}
$$

$$
R:\{y \neq-11\}
$$

3. $y=\frac{2}{5-3 x}-7$

$$
\begin{aligned}
5-3 x & \neq 0 \\
-3 x & \neq-5
\end{aligned}
$$

$$
D:\left\{x \neq \frac{5}{3}\right\}
$$

$x \neq \frac{5}{3}$
$R:\{y \neq-7\}$

U3D7
The function given in each graph below is $f(x)$. Sketch the graph of the indicated new function. REMEMBER - Stretch and reflect FIRST, then slide LAST.

$$
y=\frac{3}{4} f(x)
$$

V. Comp. factor $\frac{3}{4}$

$$
y=f\left(\frac{1}{2} x\right)
$$

H. Stretch factor 2

$$
y=f(2 x)
$$

H. Comp. factor $\frac{1}{2}$
H.Comp. by z

U3D7

U3D7 Practice: p. 229 \#3, 4ii, 5 (odds), 6 (odds), 7, 11 (odds)

