
Vertex
Domain
Direction of opening
Axis of symmetry
Range
What would the graph of $y=(2 x)^{2}$ look like?
Using algebra, it simplifies to $y=2^{2} x^{2}$ or $y=4 x^{2} \ldots$ this horizontal change was simplified to look like a vertical stretch factor 4.
Let's look at a table of values to see how x changed.

x	$y=x^{2}$
0	0
1	1
2	4
3	9

x	$y=(2 x)^{2}$	$y=4 x^{2}$
0	0	0
$1 / 2$	1	$4\left(\frac{1}{2}\right)^{2}=1$
1	4	$4(1)^{2}=4$
$\frac{3}{2}$	9	$4\left(\frac{3}{2}\right)^{2}=4\left(\frac{9}{4}\right)=9$

Notice: to get the same y-values, x is \qquad as much when there is a two in front of the x.
Try $\mathrm{y}=\left(\frac{1}{3} x\right)^{2}$

x	$y=x^{2}$
0	0
1	1
2	4
3	9

x	$\mathrm{y}=\left(\frac{1}{3} x\right)^{2}$
0	0
3	1
6	4
9	9

Notice: to get the same y-values, x is \qquad as much when there is a one-third in front of the x .

In General: $y=a f[b(x-h)]+k$
a is: a reflection in the x -axis when $\mathrm{a}<0$ a vertical stretch when $|a|>1$, a vertical compression when $0<|a|<1$
\mathbf{b} is: a reflection in the y -axis when $\mathrm{b}<0$ a horizontal stretch factor $\frac{1}{b}$ when $0<|\mathrm{b}|<1$ a horizontal compression factor $\frac{1}{b}$ when $|\mathrm{b}|>1$

Horizontal is opposite to what it looks like...
When $b=3$, it is a horizontal compression
(divide by 3 or multiply by a third).
When $b=\frac{1}{3}$, it is a horizontal stretch factor 3 .

Applying the transformations you have learned to the Root Function.

$a:$	$y=a f(x)$	or	$y=a \sqrt{x}$
$b:$	$y=a f(b x)$	or	$y=$
$h:$	$y=a f[b(x-h)]$	or	$y=$
$k:$	$y=a f[b(x-h)]+k$	or	$y=$

U3D7

Describe the transformations to the Root function and apply them as necessary to graph the following equations. State the domain and range. ***Remember: When applying transformations, stretches and reflections must always be done before shifts.***

1. $y=-\sqrt{2 x}$
2. $f(x)=3 \sqrt{x}-1$

3. $y=-4+\sqrt{3-3 x}$

State the domain and range for the following without graphing.

1. $y=\sqrt{\frac{1}{4} x}+2$
2. $g(x)=3-\sqrt{x-2}$
3. $h(x)=\sqrt{3 x-6}$

$$
y=\sqrt{5-x}
$$

Applying the transformations you have learned to the Reciprocal Function $f(x)=\frac{1}{x}$
a:

$$
y=a f(x)
$$

or
$y=$
b:

$$
y=a f(b x)
$$

or
$y=$
h:

$$
y=a f[b(x-h)]
$$

or
$y=$
$k: \quad y=a f[b(x-h)]+k$
or
$y=$

U3D7
Remember the graph of

$$
y=\frac{1}{x}
$$

Describe the transformations to the Reciprocal function and apply them as necessary to graph the following equations. State the domain and range.

1. $f(x)=\frac{3}{x-4}$
2. $g(x)=3-\frac{1}{2 x}$

State the domain and range for the following without graphing. (Remember: asymptotes only move with shifts (L/R, U/D)

1. $y=\frac{1}{x+3}+8$
2. $f(x)=\frac{5}{x-9}-11$
3. $y=\frac{2}{5-3 x}-7$

The function given in each graph below is $f(x)$. Sketch the graph of the indicated new function. REMEMBER - Stretch and reflect FIRST, then slide LAST.

U3D7 Practice: p. 229 \#3, 4ii, 5 (odds), 6 (odds), 7, 11 (odds)

