U3D6 T INVERSES continued

Monday, March 18, 2019

6:45 PM

U3D6_T **INVERSES ...**

U3D6 MCR 3UI

Inverses Continued

Warm Up: A) State the inverse of $P = \{(2,3), (4,5), (9,-2)\}$

B) Graph the inverse of each of the following and identify domain and range of the original and the inverse graph:

 $(2,1) \rightarrow (-3,0)$ $(2,1) \rightarrow (1,2)$ $(4,5) \rightarrow (5,4)$

D: {xeR} & for both R: {yeR}

 $(-4,3) \Rightarrow (3,-4)$ $(0,-2) \Rightarrow (-2,0)$ $(4,3) \Rightarrow (3,4)$ $(6,0) \Rightarrow (0,6)$ $for g(x), g^{-1}(x)$ $D: \{-4 \le x \le 6\} D: \{-1 \le x \le 3\}$ R: {-1 < y < 3} R: {-4 < y < 6}

Inverses (continued):

Inverses (continued):

Method for finding the equation of an inverse (continued)

1. Determine the inverse of $f(x) = x^2 - 2$, and graph both $y = \pm 3$ functions. C = C - 1. Determine the functions. For $f^{-1}(x)$,

State the Domain and Range of each

$$f(x)$$

D: { $x \in \mathbb{R}$ }

$$f^{-1}(x)$$
D: $\{ x \ge -\lambda \}$

D:
$$\{x \in R\}$$
 D: $\{x \ge -2\}$ R: $\{y \in R\}$

Is $f^{-1}(x)$ a function? N_0 .

Is it possible to make $f^{-1}(x)$ a function?

No. Although, we can separate it into two functions.

2. Determine the equation of the inverse for each of the following functions and identify if the inverse is a function:

a.
$$q(x) = \frac{1}{x-2}$$
, $x \neq 2$, $y \neq 0$

for
$$q^{-1}(x)$$
,
$$\frac{1}{y-2} = \frac{x}{1}$$
take preciprocal reciprocal sides
$$\frac{y-2}{1} = \frac{1}{x}$$

$$y = \frac{1}{x} + 2$$
isolate y
$$y = \frac{1}{x} + 2$$

...
$$q^{-1}(x) = \frac{1}{x} + 2$$
, $x \neq 0$, $y \neq 2$

b.
$$f(x) = 5x^{2} - 2$$

 $f(x) = 5x^{2} - 2$
 $f(x) = 5x^{2} - 2 = x$
 $f(x) = x + 2$
 $f(x) = \frac{x+2}{5}$
 $f(x) = \frac{x+3}{5}$
 $f(x) = \frac{x+3}{5}$
 $f(x) = \frac{x+3}{5}$
 $f(x) = \frac{x+3}{5}$
 $f(x) = \frac{x+3}{5}$

Reflective Property for Inverses

The following are inverses of each other.

Note:

The inverse in the first graph is not a function due to the VLT vertical line test.

The graph of $y = f^{-1}(x)$ is the reflection of the

graph y = f(x) in the line y = y.

The cost of a pizza is \$8 plus \$1.25 per topping.

a) Write an equation of Cost as a function of number of toppings.

C(n) = 8 + 1.25 n, where n is the number of toppings, c is the total cost (\$)

b) State the domain and range. Assume 23 toppings are

available.

D: [$n \in W$, $n \le 23$]

R: [8, 9.25, 10.50, ..., 36.75] $\begin{array}{r} 23 \\ + 5.75 \\ \hline 28.75 \\ + 8 \end{array}$

c) Find the inverse, and explain its meaning.

8+1.25n=C $\frac{4}{5} \times 1.25 \text{ n} = (C-8)_{\times} \frac{4}{5} \text{ note: } 1.25 = \frac{5}{4}$

 $n = \frac{4(c-8)}{5}$ n is a function of C If I want to spend a certain amount, it will tell me how many toppings I can have.

U3D6 Practice: p. 215 #10 ii,v, 12, 13cg, 14iv, vi, 15b, 22, 23