U3D5 T
INVERSES

U3D5 MCR SUI INVERSE FUNCTIONS
WARM UP: State the domain and range for $y=-\sqrt{x+2}-4$

Domain $=\{x \geq-2\}$
Range $=\{y \leqslant-4\}$

Inverse Functions

1. Consider the following sets.
$E=\{(0,1),(1,2),(2,3),(3,4)\} F=\{(1,0),(2,1),(3,2),(4,3)\}$

E and F are considered to be INVERSES.

An inverse function is said to "reverse" the processes of another function. For a function $f(x)$, the value of x would be input, and the value of y would result. For the inverse of $f(x)$, the value of y would be input, and the value of x would result. The inverse of a function has a set of ordered pairs that are obtained by interchanging the coordinates of ordered pairs of the function.

Notation

The inverse of $y=g(x)$ is written as $y=g^{-1}(x)$.
Note this is not an exponent.
It is only used if the x and y-values are switched.

The inverse of $(7,-8)$ is \qquad .

The inverse of $f(3)=9$ is $f^{-1}(9)=3$.

NOTE:

2. Method for finding the equation of an inverse.
a. $\quad(x)=2 x+1$
for f^{-1}, form: to explain you $2 y+1=x<$ interchange variables $2 y=x-1 \curvearrowright$ interchange $x \geqslant y$ in equation

$$
y=\frac{x-1}{2}
$$

(AR) $y=\frac{1}{2} x-\frac{1}{2}$

$$
\therefore f^{-1}(x)=\frac{1}{2} x-\frac{1}{2}
$$

$$
\begin{aligned}
& (1,-3) \rightarrow(-3,1) \\
& (2,-2) \rightarrow(-2,2) \\
& (3,-3) \rightarrow(-3,3) \\
& (4,-2) \rightarrow(-2,4) \\
& (5,2) \rightarrow(2,5)
\end{aligned}
$$ are finding the inverse

symmetry.
is of
\qquad

isolate y
you may write this in either form form to make it clear that the answer is not the original function but its inverse.
b. $\quad p(x)=\sqrt{x}+3$
$D:\{x \geq 0\} \quad R:\{y \geq 3\}$

$$
\begin{aligned}
& \text { for } P^{-1}, \\
& \begin{aligned}
& \sqrt{y}+3=x \\
&(\sqrt{y})^{2}=(x-3)^{2} \\
& y=(x-3)^{2} \quad D:\{x \geq 3\} \quad R:\{y \geq 0\} \\
& P^{-1}(x)=(x-3)^{2}, x \geq 3
\end{aligned}
\end{aligned}
$$

Pg. 215 \#ab, 5
...Continued on Unit Day 6

