Vertical and Horizontal Translations of Functions

Vertical Translations

How do the graphs of $f(x)=x^{2}$ and $y=x^{2}+3$ compare? (Sketch, state domain and range):
$f(x)=x^{2}$

$$
y=x^{2}+3
$$

D: \{
R: \{
\}
D: $\{$
\} R: \{
\}
\}

The second graph is a \qquad translation of 3 units \qquad
from the first graph. (All y-values in $f(x)$ have been translated \qquad).

To write the second graph in function notation, we write \qquad
2. Describe the graph of $y=\sqrt{x}-3$.

The graph of $y=\sqrt{x}-3$ is a \qquad translation of 3 units \qquad from the graph of $\mathrm{g}(\mathrm{x})=$ \qquad . $y=\sqrt{x}-3$ is \qquad in function notation.

State the Domain and Range of each graph in the description above:

$$
g(x)=
$$

$y=$ \qquad
D: \{
\}

D: \{
R: \{
R: \{
\}
The graph of $\mathbf{y}=\mathbf{f}(\mathbf{x})+\mathbf{k}$ is congruent to $\mathbf{y}=\mathbf{f}(\mathbf{x})$. If $\mathbf{k} \boldsymbol{>} \mathbf{0}$, translate the graph of $\mathbf{f}(\mathbf{x}) \mathbf{k}$-units up.
If $\mathbf{k}<\mathbf{0}$, translate the graph of $\mathbf{f}(\mathbf{x}) \mathbf{k}$-units down.

U3D3 MCR3UI

Horizontal Translations

How do the graphs of $h(x)=\sqrt{x}$ and $y=\sqrt{x+2}$ compare? (Sketch, state domain and range)

$h(x)=\sqrt{x}$	
x	$h(x)$
0	
1	
4	
9	
16	

D: \{

R: \{
\}
D:\{
\} $\mathrm{R}:\{$

The graph of $y=\sqrt{x+2}$ is a \qquad translation of 2 units to the \qquad of the graph $\mathrm{h}(\mathrm{x})=\sqrt{\mathrm{x}}$. In function notation, $\mathrm{y}=$

The graph of $\mathbf{y}=f(x-h)$ is congruent to the graph of $\mathbf{y}=f(x)$.
If $h>0$, translate the graph of $f(x)$ to the right h-units.
If $\mathbf{h}<\mathbf{0}$, translate the graph of $\mathbf{f}(\mathbf{x})$ to the left \boldsymbol{h}-units.

Note: Remember, for horizontal shifts, it is opposite of what you see in the brackets.

Examples:

1. Describe the graph of $y=(x+4)^{2}-5$.
2. For the function shown, $f(x)$,
i) describe how the graph of $y=f(x-2)+3$ can be obtained from the graph of $y=f(x)$
ii) graph $y=f(x-2)+3$

3. Given $j(x)=\frac{1}{x}$. Determine the equation of $y=j(x-5)+3$. Describe the graph of the second function.
4. Given $h(x)=\sqrt{x}$.
a) Use function notation to describe the graph of $h(x)$, shifted left 11 units and up 5 units.
b) Write the equation of the translated function described in part (a).
5. Given $m(x)=\frac{1}{x+3}$.
a) Write the image equation for the transformation $y=m(x-7)+2$.
b) State the Domain and Range of each function.
c) Graph both functions on the same grid.

