How do we know if a relation is a function?
\checkmark Each independent value (i.e. x-value) has only \qquad dependent value (i.e. y value)
\checkmark The graph passes the \qquad - a vertical line will only ever cross the graph \qquad .

Every function has a domain and range.

Domain: The set of all possible \qquad in the relation
Range: The set of all possible \qquad in the relation
Example 1:
a)

Function? Yes or No
D:
R:
b)

Function? Yes or No
D:
R:
Function? Yes or No
D:
R:

d)

Function? Yes or No
D:
R:
e) $\{(1,2),(2,-3),(4,5)\}$
Function? Yes or No
D:
R:
f) $g(x)=x^{2}$
Function? Yes or No
D:
R:

Function? Yes or No
D:
R:
h)

Function? Yes or No
D:

R:
j) $3 x-5 y=12$

Function? Yes or No

D:

R:
k) $f(x)=-3 x^{2}+5$

Function? Yes or No
D:
R:

FUNCTION NOTATION

Function notation is an alternative way to write a function. A common function notation used is $f(x)$, which is read as " f of x ". This just means that a functions final value, $f(x)$, is dependent on the value of x. Note: $f(x)$ is exactly the same thing as y in our equations. Also note, that it does not mean " f times x "! The variable used to represent the function can also change so that you can decipher multiple different functions within any given problem (i.e. $g(x), h(x)$, etc). Function notation helps give a little bit more information about the function. For example, if you see $f(4)=-6$, this means that the function has a value of -6 when $x=4$, thus a point on the graph would be (4, -6).

Example 2:
a) If $f(x)=3 x^{2}-7$, evaluate $f(-3)$
b) If $f(x)=1-3 x$, find and simplify $3 f(m+2)$
c) If $f(x)=x^{2}-5 x$, find the values of x if the value of $f(x)$ is 6 .

