U2D12_T Review Period

Monday, February 25, 2019

10:09 AM

U2D12_T Review P...

1. Simplify the following expressions.

a)
$$\sqrt{48} - \sqrt{27} + \sqrt{75}$$

b) $(4 + 2\sqrt{3})(1 - \sqrt{3})$
 $= \sqrt{16 \times 3} - \sqrt{9 \times 3} + \sqrt{25 \times 3}$
 $= 4\sqrt{3} - 3\sqrt{3} + 5\sqrt{3}$
 $= 6\sqrt{3}$

2. Simplify the following expression. (show your steps and be sure to reduce)

$$5\sqrt{28}$$

$$= 5\sqrt{4\times7}$$

$$= 5(2\sqrt{7})$$

$$= 10\sqrt{7}$$

3. Find the maximum or minimum value of $y = -3x^2 + 18x - 19$, and the value of x when it occurs.

$$y = -3\pi(x - 6) - 19$$

$$(0, -19) \qquad f(3) = -3(3)(-3) - 19$$

$$f(3) = 8 \qquad V(3, 8)$$

$$7 = \frac{6}{2}$$

$$8 = \frac{3}{4}$$

4. Given $y = 2x^2 - 10x - 14$, state the vertex, axis of symmetry, direction of opening, y-intercept,

domain, and range.

$$y = 2(x^{2} - 5x + \frac{25}{4} - \frac{25}{4}) - \frac{14}{1}$$

$$y = 2(x - \frac{5}{2})^{2} - \frac{25}{2} - \frac{28}{2}$$

$$y = 2(x - \frac{5}{2})^{2} - \frac{53}{2}$$

$$y = a(x - h)^{2} + k$$

$$V(h, k)$$

$$V(\frac{5}{2}, \frac{53}{2})$$

$$V(\frac{5}{5},\frac{-5}{2})$$

$$\chi = \frac{5}{2} \text{ opens up y-intercept -14}$$

$$D: \{x \in \mathbb{R}\} \quad \mathbb{R}: \{y \geq -\frac{5}{2}\}$$

5. Solve the following quadratic equation. State the exact value(s) being sure to simplify any radical

exact value(s) being sure to simplify any radical answers.
$$9x^2 - 49 = 0$$

$$(3x - 7)(3x + 7) = 0$$

$$x = \frac{1}{3} \text{ or } x = -\frac{7}{3}$$

$$x = \frac{1}{3} \frac{1}{2} \sqrt{3} \sqrt{49}$$

$$x = \frac{1}{3} \sqrt{49} \sqrt{49}$$

$$\chi = \frac{4 \sqrt{0 - 4(4)(-44)}}{18}$$

$$\chi = \frac{4 \sqrt{4 \cdot \sqrt{44}}}{18}$$

6. Solve the following quadratic equation. State the exact value(s) being sure to simplify any radical answers. $2x^2 - 14x - 13 = 0$

vers.
$$2x - 14x -$$

$$D = 300$$

$$x = \frac{14 \pm \sqrt{300}}{4}$$

$$\gamma = \frac{14 \pm \sqrt{100 \times 3}}{4}$$

$$x = \frac{14 \pm 10.13}{4}$$

$$\chi = \frac{\lambda(7 \pm 5\sqrt{3})}{4/2}$$

$$\chi = \frac{7 \pm 5\sqrt{3}}{2}$$

$$\chi = \frac{7 \pm 5 \Box}{2}$$

7. Find the point(s) of intersection of the pair of functions: $y = -2x^2 - 5x + 20$ and y = 6x - 1.

Sub Pinto Q $2x^2 + 5x - 20 + 6x - 1 = 0$ $2x^2 + 11x - 21 = 0$ $2x^2 + 11x - 21 = 0$ $2x^2 + 11x - 21 = 0$ 2x - 3 2x - 3 2x - 7Sub into x = 3 x = 3 x = 4 x = 3 x = 6(3) - 1 y = 6(3)

8. Calculators are sold to students for \$20 each. Three hundred students are willing to buy them at that price. For every \$5.00 increase in price, there are 30 fewer students willing to buy a calculator. What is the maximum revenue from selling student calculators and what is the selling price?

- **9.** On Mickey Mouse hit the longest home run in regular-season major league baseball on Mars. The trajectory of the ball sent by Mantle's hit is approximated by the equation:
- $y = -0.0014x^2 + 0.9x + 5$ where x is the horizontal distance (*in feet*) and y is the vertical distance (*in feet*) of the ball from home plate.
 - a) Determine the maximum height of the ball, to the nearest one decimal place.
 - b) Determine how far the ball landed from home plate, to the nearest one decimal place.

The population of an Ontario city is modeled by the function $P(t) = 0.5t^2 + 15t + 400$ where P(t) is the population in thousands & t is the time in years. (Note: t = 0 corresponds to the year $\frac{1995}{t=1}$ a. What will be the population in 2018? b. In what **year** is the population expected to be 2,400,000?

a) 2018 t=23 years -1995 P(23) = 0.5(23)+15(23)+400 P(23) = 1009.5

in 2018 the population is expected to be 1009 500 people.

b)
$$P(t) = 2400$$

 $0.5t^2 + 15t + 400 = 2400$
 $10.5t^2 + 15t - 2000 = 0$
 $10.5t^2 +$

1995 + 50 yrs 2045 i we would expect the population to reach 2.4 million in 2045.

U2D12 Workshee...

U2D12 MCR3UI Worksheet

Quadratics Review

- 1. Consider the quadratic function $f(x) = -3(x-2)^2 + 5$.
 - a) State the direction of opening, the vertex, and the axis of symmetry.
 - b) State the domain and range.
 - c) Graph the function.
- 2. Consider the quadratic function f(x) = 4(x-2)(x+6).
 - a) State the direction of opening, and the zeros of the function.
 - b) Determine the coordinates of the vertex.
 - b) State the domain and range.
 - c) Graph the function.
- 3. Determine the equation of the axis of symmetry of the parabola with points (-5,3) and (3,3) equally distant from the vertex on either side of it.
- 4. For each quadratic function, state the maximum or minimum value and where it will occur.

a)
$$f(x) = -3(x-4)^2 + 7$$

b)
$$f(x) = 4x(x+6)$$

- 5. The height, h(t), in metres, of the trajectory of a football is given by $h(t) = 2 + 28t \frac{49}{10}t^2$, where t is the time in flight, in seconds. Determine the maximum height of the football and the time when that height is reached. (Use fractions)
- 6. Express each number as a mixed radical in simplest form.

c)
$$4\sqrt{12} - 3\sqrt{48}$$

d)
$$(3-2\sqrt{7})^2$$

- 7. Determine the *x*-intercepts of the quadratic function $f(x) = 2x^2 + x 15$.
- 8. The population of a Canadian city is modelled by $P(t) = 12t^2 + 800t + 40\,000$, where t is the time in years. When t = 0, the year is 2007.
 - a) According to the model, what was the population expected to be in 2010?
 - b) In what year is the population predicted to be 300 000?
- 9. The height, h(t), of a projectile, in metres, can be modelled by the equation $h(t) = 14t 5t^2$, where t is the time in seconds after the projectile is released. Can the projectile ever reach a height of 9 m? Explain.
- 10. Determine the values of k for which the function $f(x) = 4x^2 3x + 2kx + 1$ has two zeros. Check these values in the original equation.

- 11. Determine the break-even points of the profit function $P(x) = -2x^2 + 7x + 8$, where x is the number of dirt bikes produced, in thousands.
 - 12. Determine the equation of the parabola with roots $2 + \sqrt{3}$ and $2 \sqrt{3}$, and passing through the point (2,5).
 - 13. Describe the characteristics that the members of the family of parabolas $f(x) = a(x+3)^2 4$ have in common. Which member passes through the point (-2, 6)?
 - 14. An engineer is designing a parabolic arch. The arch must be 15 m high, and 6 m wide at a height of 8 m. a) Determine a quadratic function that satisfies these conditions.
 - b) What is the width of the arch at its base?
 - 15. Calculate the point(s) of intersection of $f(x) = 2x^2 + 4x 11$ and g(x) = -3x + 4
 - 16. The height, h(t), of a baseball, in metres, at time t seconds after it is tossed out of a window is modelled by the function $h(t) = -5t^2 + 20t + 15$. A boy shoots at the baseball with a paintball gun. The trajectory of the paintball is given by the function g(t) = 3t + 3. Will the paintball hit the baseball? If so, when? At what height
 - 17. a) Will the parabola defined by $f(x) = x^2 6x + 9$ intersect the line g(x) = -3x 52 Justify your answer. b) Change the slope of the line so that it will intersect the parabola in two locations.

U2D12 MCR3UI Worksheet **Quadratics Review**

- 18. You are given $f(x) = -5x^2 + 10x 5$.
 - a) Express the function in factored form and determine the vertex.
 - b) Identify the zeros, the axis of symmetry, and the direction of opening.
 - c) State the domain and range.
 - d) Graph the function.
- 19. For each function, state whether it will have a maximum or a minimum value.

Describe the method you would choose to calculate the maximum or minimum value.

a)
$$f(x) = -2x^2 - 8x + 3$$

b)
$$f(x) = 3(x-1)(x+5)$$

20. Calculate the value of k such that $kx^2 - 4x + k = 0$ has one root.

Does the linear function g(x) = 6x - 5 intersect the quadratic function

 $f(x) = 2x^2 - 3x + 2$? How can you tell? If it does intersect, determine the point(s) of intersection.

22. Determine the equation in standard form of the parabola shown to the right.

ANSWERS:

1. a) down;
$$V(2,5)$$
; $x = 2$

b)
$$D \cdot \{x | x \in \mathbb{R}\}$$

b)
$$D: \{x | x \in \mathbb{R}\}$$
 c) $R: \{y | y \in \mathbb{R}, y \le 5\}$

2. a) up;
$$x = 2$$
, $x = -6$

b)
$$V(-2, -64)$$

1. a) down;
$$V(2,5); x=2$$
 b) $D: \{x|x \in \mathbb{R}\}$ c) $R: \{y|y \in \mathbb{R}, y \le 5\}$
2. a) up; $x=2, x=-6$ b) $V(-2, -64)$ c) $D: \{x|x \in \mathbb{R}\}$ $R: \{y|y \in \mathbb{R}, y \ge -64\}$
3. $x=-1$ 4. a) Maximum of 7 when $x=4$ b) Minimum of -36 when $x=-3$

5 42 m after
$$\frac{20}{2}$$
 second

c)
$$-4\sqrt{3}$$
 d) $37 - 12\sqrt{7}$

3.
$$x = -1$$
 4. a) Maximum of 7 when $x = 4$ b) Minimum 5. $42 \text{ m after } \frac{20}{7} \text{ second}$ 6. a) $7\sqrt{2}$ b) $-20\sqrt{2}$ c) $-4\sqrt{3}$ 7. $x = \frac{5}{2}$, $x = -3$ 8. a) 52 428 b) 2124 9. Yes. 10. $\left\{k < -\frac{1}{2} \text{ or } k > \frac{7}{2}\right\}$ 11. 4408 bikes 12. $y = \frac{-5}{3}x^2 + \frac{20}{3}x - \frac{5}{3}$ 13. $V(-3, -4)$; $y = 10(x + 3)^2 - 4$ 14. a) $y = \frac{-7}{9}(x - 3)^2 + 15$

12.
$$y = \frac{-5}{3}x^2 + \frac{20}{3}x - \frac{5}{3}$$

13.
$$V(-3,-4)$$
; $y = 10(x+3)^2 - \frac{1}{2}$

14. a)
$$y = \frac{-7}{2}(x-3)^2 + 1$$

15.
$$\left\{ (-5,19), \left(\frac{3}{2}, \frac{-1}{2} \right) \right\}$$

17. a) No. b)
$$\{m < (-6 - 2\sqrt{14}) \text{ or } m > (-6 + 2\sqrt{14})\}$$

17. a) No. b)
$$\{m < (-6 - 2\sqrt{14}) \text{ or } m > (-6 + 2\sqrt{14}) \}$$

18. a) $f(x) = -5(x - 1)^2$; $V(1,0)$ b) $x = 1$; Down

b)
$$x = 1$$
; Down

18. a)
$$f(x) = -5(x-1)^2$$
; $V(1,0)$ b) $x=1$; Down c) $D: \{x|x \in \mathbb{R}\}$ $R: \{y|y \in \mathbb{R}, y \leq 1\}$ 19. a) Maximum (complete the square or partial factor) b) Minimum (use factored form)

20. a)
$$\{k = \pm 2\}$$

20. a)
$$\{k = \pm 2\}$$
 21. Yes; $D > 0$; $\{\left(\frac{7}{2}, 16\right), (1,1)\}$ 22. $y = -x^2 + 8x - 13$

22.
$$y = -x^2 + 8x - 13$$

23. a)
$$2 - 4\sqrt{2}$$

23. a)
$$2 - 4\sqrt{2}$$
 b) $15 - 3\sqrt{10} + 5\sqrt{5} - 5\sqrt{2}$