Families of Quadratics
Determine the maximum number of parabolas that could be drawn through the points given in each of the graphs to the right.

Number of Points:

Number of Possible Parabola:

What is the minimum number of points required to define a unique parabola?

1. What characteristics will two parabolas in the family $f(x)=a(x-2)(x+5)$ share?
2. How are the parabolas $f(x)=-2(x-3)^{2}-5$ and $g(x)=6(x-3)^{2}-5$ the same? How are they different?
3. What point do the parabolas $f(x)=3 x^{2}+5 x-9$ and $g(x)=-5 x^{2}+5 x-9$ have in common?
4. Determine the equation of the parabola with x-intercepts
a) -4 and 3 , and that passes through $(2,7)$
b) 0 and 8 , and that passes through $(-3,-6)$
c) $\sqrt{7}$ and $-\sqrt{7}$, and that passes through $(-5,3)$
d) $1-\sqrt{2}$ and $1+\sqrt{2}$, and that passes through $(2,4)$
5. Determine the equation of the parabola with vertex
a) $(-2,5)$ and that passes through $(4,-8)$
b) $(1,6)$ and that passes through $(0,-7)$
c) $(4,-5)$ and that passes through $(-1,-3)$
d) $(4,0)$ and that passes through $(11,8)$
6. Determine the equation of the quadratic function $f(x)=a x^{2}-6 x-7$ if $f(2)=3$
7. Determine the equation of the parabola with x-intercepts ± 4 and passing through $(3,6)$
8. Determine the equation of the quadratic function that passes through $(-4,5)$ if its zeros are $2+\sqrt{3}$ and $2-\sqrt{3}$.
9. What is the equation of the parabola with zeros $-1,-3$ if the point $(-4,-9)$ is on the graph?
10. a) Write the equation of the family of quadratic functions whose roots are 5 and -6 .
b) Determine the equation of the specific member of the above family that passes through the point (1, -3)
11. Write one possible quadratic equation, given each pair of roots:
a) 7 and -2
b) $-\frac{3}{5}$ and $-\frac{2}{3}$
c) $2-\sqrt{5}$ and $2+\sqrt{5}$
d) $\frac{3+2 \sqrt{6}}{2}$ and $\frac{3-2 \sqrt{6}}{2}$
12. Determine the standard form equation of the quadratic function that has an optimal value of -12 , if the roots of the corresponding quadratic equation are $3+2 \sqrt{3}$ and $3-2 \sqrt{3}$.
13. Determine the standard form equation of the quadratic function that goes through $(-4,-1)$, if the only root of the corresponding quadratic equation is $-\frac{7}{2}$.
14. Determine the standard form equation of the quadratic function that represents the family of parabolas, if the roots of the corresponding quadratic equation are $-\frac{\sqrt{5}}{2}$ and $\frac{\sqrt{5}}{2}$.

Answers:

1. Same zeros, Same Axis of Symmetry 2. Same vertex, same A of S, different direction of opening, different stretch
2. $f(x), g(x)$ have the same γ-intercept at -9
3. a) $y=\frac{-7}{6}(x+4)(x-3)$
4. b) $y=\frac{-2}{11}(x)(x-8)$
5. c) $y=\frac{-1}{6}\left(x^{2}-7\right)$
6. d) $y=-4 x^{2}+8 x+4$
7. a) $y=\frac{-13}{36}(x+2)^{2}+5$
5.b) $y=-13(x-1)^{2}+6$
5.c) $y=\frac{2}{25}(x-4)^{2}-5$
8. d) $y=\frac{\theta}{49}(x-4)^{2}$
9. $y=\frac{11}{2} x^{2}-6 x-7$
10. $y=\frac{-6}{7}\left(x^{2}-16\right)$
11. $y=\frac{5}{33}\left(x^{2}-4 x+1\right)$
12. $y=-3 x^{2}-12 x-9$
13. a) $y=k(x-5)(x+6)$
14. a) $x^{2}-5 x-14=0$
15. b) $y=\frac{3}{28}(x-5)(x+6)$
11.b) $15 x^{2}+19 x+6=0$
11.c) $x^{2}-4 x-1=0$
16. d) $4 x^{2}-12 x-15=0$
17. $f(x)=x^{2}-6 x-3$
18. $f(x)=-4 x^{2}-28 x-49$
19. $f(x)=4 k x^{2}-5 k, k \in \mathbb{R}$

U2D II
U2D II pg (t)
Graph Number of Points Number of Possible Parabolas

A	2	many
B	3	one
C	3	one
D	3	one
Be weed	3 points to define a unique parabola.	

U2D II pg (2)

1. Both have the same two zeros $2,-5$.
2. $V(3,-5)$ is shared $f(x)$ open's down $g(x)$ opens up $g(x)$ is stretched 3 x's as much as $f(x)$.
$f(x)$ has a max of -5 at $x=3$
$g(x)$ has a min of -5 at $x=3$.
3. $f(x), g(x)$ have the same y-intercept $(0,-q)$
4.a)

$$
\text { a) } \begin{aligned}
7 & =a(2+4)(2-3) \\
7 & =a(6)(-1) \\
\frac{-7}{6} & =a \\
\therefore y & =-\frac{7}{6}(x+4)(x-3)
\end{aligned}
$$

(8)

$$
\begin{aligned}
& S-1, p-12 \\
& y=a\left(x^{2}+x-12\right) \\
& 7=a(4+2-12) \\
& 7=a(-6)) \\
& \frac{-7}{6}=a
\end{aligned}
$$

b)

$$
\begin{aligned}
y & =a(x-s)(x-t) \\
-6 & =a(-3-0)(-3-8) \\
-6 & =a(-3)(-11) \\
\frac{-6}{33} & =a \\
\frac{-2}{11} & =a \\
\therefore y & =\frac{-2}{11}(x)(x-8) \\
y & =\frac{-2 x^{2}+16 x}{11}
\end{aligned}
$$

c)

$$
\begin{aligned}
S & =0 \quad P=-7 \\
y & =a\left(x^{2}-7\right) \\
3 & =a(25-7) \\
3 & =a(18) \\
\frac{1}{6} & =a \\
\therefore y & =-\frac{1}{6}\left(x^{2}-7\right)
\end{aligned}
$$

d)

$$
\begin{aligned}
& S=2 \quad P=1-2 \\
& y=a\left(x^{2}-2 x-1\right) \\
& 4=a(4-4-1) \\
& 4=-a \quad \therefore y=-4\left(x^{2}-2 x-1\right) \\
& a=-4 \quad \therefore y=-4 x^{2}+8 x+4
\end{aligned}
$$

5.a)
b)

$$
\begin{aligned}
& -7=a(0-1)^{2}+6 \\
& -13=a \\
& \therefore y=-13(x-1)^{2}+6
\end{aligned}
$$

C)

$$
\begin{aligned}
-3 & =a(-1-4)^{2}-5 \\
2 & =25 a \\
a & =\frac{2}{25} \\
\therefore \quad y & =\frac{2}{25}(x-4)^{2}-5
\end{aligned}
$$

d)

$$
\begin{aligned}
& 8=a(11-4)^{2}+0 \\
& 8=a(49) \\
& a=\frac{8}{49}
\end{aligned}
$$

$$
\therefore y=\frac{8}{49}(x-4)^{2}
$$

6.

$$
\begin{aligned}
f(x) & =a x^{2}-6 x-7 \quad f(2)=3 \\
3 & =a(4)-6(2)-7 \\
10 & =4 a-12 \\
22 & =4 a \\
a & =\frac{11}{2}
\end{aligned}
$$

$$
\begin{aligned}
& y=a\left(x^{2}-16\right) \\
& 6=a(9-16) \\
& 6=a(-7) \\
& -\frac{6}{7}=a \\
& \therefore y=-\frac{6}{7}\left(x^{2}-16\right)
\end{aligned}
$$

8. Sum $=4$
9. Sum -4

Product $=4-3$

$$
=1
$$

$$
y=a\left(x^{2}-4 x+1\right)
$$

$$
\begin{aligned}
& 5=a(16-4(-4)+1) \\
& 5=a(16+16+1)
\end{aligned}
$$

$$
5=\frac{a}{5}(16+16+1)
$$

$$
a=\frac{5}{33}
$$

$$
\therefore y=\frac{5}{33}\left(x^{2}-4 x+1\right)
$$

Product 3

$$
\begin{aligned}
& y=a\left(x^{2}+4 x+3\right) \\
& -9=a(16-16+3) \\
& -3=a \\
& \therefore y=-3\left(x^{2}+4 x+3\right) \\
& y=-3 x^{2}-12 x-9
\end{aligned}
$$

$$
\begin{aligned}
& y=a(x-h)^{2}+k \\
& -8=a(4+2)^{2}+5 \\
& -8=a(36)+5 \\
& \frac{-13}{36}=a \\
& \therefore y=-\frac{13}{36}(x+2)^{2}+5
\end{aligned}
$$

10.a)

$$
\begin{aligned}
& S=5+(-6) \quad P=5(-6) \\
& S=-1 \quad P=-30 \\
& y=a\left(x^{2}-S x+P\right) \quad \text { (0) } y=a(x-5)(x+6) \\
& y=a\left(x^{2}+x-30\right) \quad
\end{aligned}
$$

b) $(1,-3)$

$$
\begin{aligned}
& -3=a\left(1^{2}+1-30\right) \\
& -3=-28 a \\
& a=\frac{3}{28} \quad \therefore y=\frac{3}{28}\left(x^{2}+x-30\right) \\
&
\end{aligned}
$$

11.a)

$$
\begin{array}{ll}
S=7+(-2) & P=7(-2) \\
S=5 & P=-14
\end{array}
$$

one quadratic in tho family:
$y=x^{2}-5 x-14 \leftarrow$ quadratic function
$x^{2}-5 x-14=0 \leftarrow$ quadratic equation
b)

$$
\begin{array}{ll}
S=-\frac{3}{5}+\left(-\frac{2}{3}\right) & P=-\frac{2}{5}\left(-\frac{2}{3}\right) \\
S=-\frac{9-10}{15} & P=\frac{2}{5} \\
S=\frac{19}{15} &
\end{array}
$$ equation satisfying, this is a equation conditions.

the cons
(lc.)

$$
\begin{array}{ll}
2-\sqrt{5}, & 2+\sqrt{5} \\
5=4, & P=4-5 \\
P=-1 \\
x^{2}-4 x-1=0
\end{array}
$$

d)

$$
\begin{aligned}
& S=\frac{3+2 \sqrt{6}}{2}+\frac{3-2 \sqrt{6}}{2} \\
& S=\frac{6}{2} \quad P=\frac{9-4(6)}{4} \\
& S=3 \quad P=\frac{-15}{4} \\
& x^{2}-3 x-\frac{15}{4}=0 \quad 2 \times 4 \\
& 4 x^{2}-12 x-15=0
\end{aligned}
$$

12. ($h,-12$) roots: $3+2 \sqrt{3}, 3-2 \sqrt{3}$

$$
\begin{aligned}
& \text { Sum }=6 \\
& \text { Product }=9-4(3) \text { AofS: } x \\
& P=-3=\frac{(3+2 \sqrt{3})+(3-2 \sqrt{3})}{2} \\
& x \\
&=\frac{6}{2} \\
& x=3 \quad h=3
\end{aligned}
$$

$$
\begin{aligned}
& \text { subin } \begin{aligned}
y & =a\left(x^{2}-6 x-3\right) \quad x= \\
V(3,-12) \leq 12 & =a\left(3^{2}-6(3)-3\right) \\
-12 & =a(-12) \\
1 & =a
\end{aligned} \quad \therefore y=x^{2}-6 x-3
\end{aligned}
$$

13. $\binom{-4,-1)}{x} \quad-\frac{7}{2} \leftarrow$ only root U2D il pg (6)

$$
y=a\left(x+\frac{7}{2}\right)^{2} \rightarrow O R
$$

$$
\begin{aligned}
-1 & =a\left(-\frac{4}{1}+\frac{7}{2}\right)^{2} \\
-1 & =a\left(-\frac{8+7}{2}\right)^{2} \\
-1 & =a\left(-\frac{1}{2}\right)^{2} \\
-1 & =\frac{1}{4} a \\
-\frac{1}{1} \times \frac{4}{1} & =a \\
a & =-4
\end{aligned}
$$

$$
\therefore \frac{y=-(2 x+7)^{2} \text { vertex }}{\text { Cor }}
$$

$\tau_{\text {Standard }}$

$$
\begin{aligned}
& S=-\frac{\sqrt{5}}{2}+\frac{\sqrt{5}}{2} \\
& S=0
\end{aligned}
$$

$$
\begin{aligned}
& P=\left(\frac{\sqrt{5}}{2}\right) \\
& P=-\frac{5}{4}
\end{aligned}
$$

$$
y=a\left(x^{2}-0 x-\frac{5}{4}\right)
$$

Let $a=4 k ; k \in \mathbb{R}$

$$
y=\frac{4 k\left(x^{2}-\frac{5}{4}\right)}{2}
$$

$$
y=4 k x^{2}-5 k
$$

