Determine the maximum number of parabolas that could be drawn through the points given in each of the graphs to the right.

Number of Points:
Number of Possible Parabola:

What is the minimum number of points required to define a unique parabola?

1. What characteristics will two parabolas in the family $f(x)=a(x-2)(x+5)$ share?
2. How are the parabolas $f(x)=-2(x-3)^{2}-5$ and $g(x)=6(x-3)^{2}-5$ the same? How are they different?
3. What point do the parabolas $f(x)=3 x^{2}+5 x-9$ and $g(x)=-5 x^{2}+5 x-9$ have in common?
4. Determine the equation of the parabola with x-intercepts
a) -4 and 3 , and that passes through $(2,7)$
b) 0 and 8 , and that passes through $(-3,-6)$
c) $\sqrt{7}$ and $-\sqrt{7}$, and that passes through $(-5,3)$
d) $1-\sqrt{2}$ and $1+\sqrt{2}$, and that passes through $(2,4)$
5. Determine the equation of the parabola with vertex
a) $(-2,5)$ and that passes through $(4,-8)$
b) $(1,6)$ and that passes through $(0,-7)$
c) $(4,-5)$ and that passes through $(-1,-3)$
d) $(4,0)$ and that passes through $(11,8)$
6. Determine the equation of the quadratic function $f(x)=a x^{2}-6 x-7$ if $f(2)=3$
7. Determine the equation of the parabola with x-intercepts ± 4 and passing through $(3,6)$
8. Determine the equation of the quadratic function that passes through $(-4,5)$ if its zeros are $2+\sqrt{3}$ and $2-\sqrt{3}$.
9. What is the equation of the parabola with zeros $-1,-3$ if the point $(-4,-9)$ is on the graph?
10. a) Write the equation of the family of quadratic functions whose roots are 5 and -6 .
b) Determine the equation of the specific member of the above family that passes through the point (1, -3)
11. Write one possible quadratic equation, given each pair of roots:
a) 7 and -2
b) $-\frac{3}{5}$ and $-\frac{2}{3}$
c) $2-\sqrt{5}$ and $2+\sqrt{5}$
d) $\frac{3+2 \sqrt{6}}{2}$ and $\frac{3-2 \sqrt{6}}{2}$
12. Determine the standard form equation of the quadratic function that has an optimal value of -12 , if the roots of the corresponding quadratic equation are $3+2 \sqrt{3}$ and $3-2 \sqrt{3}$.
13. Determine the standard form equation of the quadratic function that goes through $(-4,-1)$, if the only root of the corresponding quadratic equation is $-\frac{7}{2}$.
14. Determine the standard form equation of the quadratic function that represents the family of parabolas, if the roots of the corresponding quadratic equation are $-\frac{\sqrt{5}}{2}$ and $\frac{\sqrt{5}}{2}$.

Answers:

1. Same zeros, Same Axis of Symmetry 2. Same vertex, same A of S, different direction of opening, different stretch
2. $f(x), g(x)$ have the same y-intercept at -9
3. a) $y=\frac{-7}{6}(x+4)(x-3)$
4. b) $y=\frac{-2}{11}(x)(x-8)$
5. c) $y=\frac{-1}{6}\left(x^{2}-7\right)$
6. d) $y=-4 x^{2}+8 x+4$
7. a) $y=\frac{-13}{36}(x+2)^{2}+5$
5.b) $y=-13(x-1)^{2}+6$
5.c) $y=\frac{2}{25}(x-4)^{2}-5$
8. d) $y=\frac{8}{49}(x-4)^{2}$
9. $y=\frac{11}{2} x^{2}-6 x-7$
10. $y=\frac{-6}{7}\left(x^{2}-16\right)$
11. $y=\frac{5}{33}\left(x^{2}-4 x+1\right)$
12. $y=-3 x^{2}-12 x-9$
13. a) $y=k(x-5)(x+6)$
14. b) $y=\frac{3}{28}(x-5)(x+6)$
15. a) $x^{2}-5 x-14=0$
16. b) $15 x^{2}+19 x+6=0$
11.c) $x^{2}-4 x-1=0$
17. d) $4 x^{2}-12 x-15=0$
18. $f(x)=x^{2}-6 x-3$
19. $f(x)=-4 x^{2}-28 x-49$
20. $f(x)=4 k x^{2}-5 k, k \in \mathbb{R}$
