U2D11-T Family-of-Func

Monday, February 25, 2019

U2D11-T Family-of-...

U2D11 MCR 3UI **Family of Functions WARM UP**

1. For what values of k does $kx^2 - 2x + 3 = 0$ have

no roots?
$$D = b^2 - 4ac$$
 $a = k, b = -2, c = 3$

$$b^2$$
- $4ac<0$

2. For what values of k does $3x^2 + kx + 2 = 0$ have a=3, b=k, c=2two roots?

$$b^{2}-4ac > 0$$
 $k^{2}-4(3)(2)>0$

$$k^{2}-4(3)(2)>0$$
 $k^{2}-24>0$

zeros:

$$k^{2}-24=0$$

 $(K-\sqrt{24})(K+\sqrt{24})=0$
 $K=\pm\sqrt{24}$
 $K=\pm\sqrt{4\times6}$
 $K=\pm2\sqrt{6}$

Family of Functions

1. Find the family of quadratic functions that have roots of -3 and 5. Leave your answer in standard form. y= ax2+bx+c

2. Determine the standard form equation of a parabola with roots 5 and -1, and goes through the point (-2,14).

Determine the standard form equation of a parabola with roots 5 and -1, and goes through the point (-2,14).

$$y = a(x-5)(x-t)$$

$$14 = a(-2-5)(-2+1)$$

$$14 = a(-7)(-1)$$

$$14 = 7a$$

$$a = 2$$
Standard form

3. Determine the equation of the quadratic function in standard form that goes through (2,5) and has zeroes at 0 and -3.

and has zeroes at
$$0$$
 and -3 .

$$y = \alpha (x-5)(x-t)$$

$$5 = \alpha (2-0)(2+3)$$

$$5 = \alpha (2)(5)$$

$$5 = 10\alpha$$

$$\alpha = \frac{1}{2}$$

4. Find the standard form equation of a parabola with roots of $x = -1 \pm \sqrt{3}$.

oots of
$$x = -1 \pm \sqrt{3}$$
.
 $y = a \left(x - [-1 + \sqrt{3}] \right) \left(x - [-1 - \sqrt{3}] \right)$
 $y = a \left(x + 1 - \sqrt{3} \right) \left(x + 1 + \sqrt{3} \right)$
Factored form

* Lots of work to expand if standard form is required!

However..... There is another way. Use the sum/product method.

a) Consider
$$y = (x-3)(x+2)$$
 or $y = x^2 - x - 6$
ROOTS: $3 - 2$ Product $y = (x-3)(x+2)$ or $y = (x-3)($

sum of roots = 3 + (-2)

product of roots = (3)(-2)= -6 \Rightarrow exactly the 'c'-value

b) For roots of $x = -1 \pm \sqrt{3}$

sum of roots =
$$(-1+\sqrt{3})+(-1-\sqrt{3})$$

= -2
product of roots = $(-1+\sqrt{3})(-1-\sqrt{3})$
= $1-3=-2$

Therefore the quadratic equation is

$$y = a(x^2 - Sx + P)$$

i.
$$y = a(x^2 + 2x - 2)$$

 $y = ax^2 + 2ax - 2a$

5. Find the family of quadratic functions with roots $\frac{2\pm\sqrt{7}}{2}$.

RECALL:
$$y = a(x^2 - Sx + P)$$

Sum =
$$\frac{2+\sqrt{7}}{3} + \frac{2-\sqrt{7}}{3} - \left(\frac{4}{3}\right)$$

Product =
$$\left(\frac{2+\sqrt{7}}{3}\right)\left(\frac{2-\sqrt{7}}{3}\right) = \frac{4}{9} - \frac{7}{9} = \frac{-3}{9} = \frac{-1}{3}$$

$$y = \alpha \left(\chi^2 - \frac{4}{3} \chi - \frac{1}{3} \right)$$

One particular quadratic with

those roots is $y = 3x^2 - 4x - 1$ (note:

used a=3

so function

has no

$$y = 3x^2 - 4x - 1$$

fractions).

U2D11 Workshee...

U2D11 MCR3UI Worksheet

Families of Quadratics

Determine the maximum number of parabolas that could be drawn through the points given in each

of the graphs to the right.

Number of Points:

Number of Possible Parabola:

What is the minimum number of points required to define a unique parabola?

- 1. What characteristics will two parabolas in the family f(x) = a(x-2)(x+5) share?
- 2. How are the parabolas $f(x) = -2(x-3)^2 5$ and $g(x) = 6(x-3)^2 5$ the same? How are they different?
- 3. What point do the parabolas $f(x) = 3x^2 + 5x 9$ and $g(x) = -5x^2 + 5x 9$ have in common?
- 4. Determine the equation of the parabola with x-intercepts
 - a) -4 and 3, and that passes through (2, 7)
 - b) 0 and 8, and that passes through (-3, -6)

 $\sqrt{9}\sqrt{7}$ and $-\sqrt{7}$, and that passes through (-5, 3)

- a) (-2, 5) and that passes through (4, -8)
- b) (1, 6) and that passes through (0, -7)
- c) (4, -5) and that passes through (-1, -3)
- d) (4, 0) and that passes through (11, 8)
- 6. Determine the equation of the quadratic function $f(x) = ax^2 6x 7$ if f(2) = 3
- 7. Determine the equation of the parabola with x-intercepts ± 4 and passing through (3, 6)
- Determine the equation of the quadratic function that passes through (-4, 5) if its zeros are $2 + \sqrt{3}$ and $2 - \sqrt{3}$.
 - 9. What is the equation of the parabola with zeros -1, -3 if the point (-4, -9) is on the graph?
 - 10. a) Write the equation of the family of quadratic functions whose roots are 5 and -6. b) Determine the equation of the specific member of the above family that passes through the point (1, -3)
 - 11. Write one possible quadratic equation, given each pair of roots:

 $y=a(x^2-9x+P)$

- a) 7 and -2 b) $-\frac{3}{5}$ and $-\frac{2}{3}$ c) $2-\sqrt{5}$ and $2+\sqrt{5}$ d) $\frac{3+2\sqrt{6}}{2}$ and $\frac{3-2\sqrt{6}}{2}$ 12. Determine the standard form equation of the quadratic function that has an optimal value of -12, if the roots of the corresponding quadratic equation are $3 + 2\sqrt{3}$ and $3 - 2\sqrt{3}$.
- 13. Determine the standard form equation of the quadratic function that goes through (-4, -1), if the only root of the corresponding quadratic equation is $-\frac{7}{2}$.
- 14. Determine the standard form equation of the quadratic function that represents the family of parabolas, if the roots of the corresponding quadratic equation are $-\frac{\sqrt{5}}{2}$ and $\frac{\sqrt{5}}{2}$.

Answers:

- 1. Same zeros, Same Axis of Symmetry 2. Same vertex, same A of S, different direction of opening, different stretch
- 3. f(x), g(x) have the same y-intercept at -9

4. a)
$$y = \frac{-7}{6}(x+4)(x-3)$$

3.
$$f(x)$$
, $g(x)$ have the same y-intercept at -9
4. a) $y = \frac{-7}{6}(x+4)(x-3)$
4. b) $y = \frac{-2}{11}(x)(x-8)$
4. c) $y = \frac{1}{6}(x^2-7)$
4. d) $y = -4x^2 + 8x + \frac{1}{11}(x)(x-8)$
5. a) $y = \frac{-13}{36}(x+2)^2 + 5$
5. b) $y = -13(x-1)^2 + 6$
5. c) $y = \frac{2}{25}(x-4)^2 - 5$
5. d) $y = \frac{8}{49}(x-4)^2$
6. $y = \frac{11}{2}x^2 - 6x - 7$
7. $y = \frac{-6}{7}(x^2-16)$
8. $y = \frac{5}{33}(x^2-4x+1)$
9. $y = -3x^2-12x-9$
10. a) $y = k(x-5)(x+6)$
11. b) $15x^2 + 19x + 6 = 0$
11. c) $x^2 - 4x - 1 = 0$
11. d) $4x^2 - 12x - 15 = 0$
12. $f(x) = x^2 - 6x - 3$
13. $f(x) = -4x^2 - 28x - 49$
14. $f(x) = 4kx^2 - 5k$, $k \in \mathbb{R}$

5. a)
$$y = \frac{1}{36}(x+2)^{n} + \frac{1}{36}(x+2)^$$

$$y = \frac{1}{25}(x-4)^2 - 5$$

a)
$$y = \frac{1}{49}(x-4)^{-1}$$

10. a)
$$v = k(x-5)(x+6)$$

10. b)
$$y = \frac{3}{3}(x-5)(x-5)$$

11 d)
$$4x^2 - 12x - 15 = 0$$

12.
$$f(r) = r^2 - 6r - 3$$

13
$$f(r) = -4r^2 - 28r - 49$$

14.
$$f(x) = 4kx^2 - 5k, k \in \mathbb{R}$$

13.
$$f(x) = -4x^2 - 28x - 49$$