U2	D9 MCR 3UI	ZEROS	
Wa	arm Up Solve the follow	/ing:	
a)	$3x^2 - 5x + 2 = 0$	b) $3x^2 - 5x + 2 \le 0$	c) $3x^2 - 5x + 2 > 0$

Zeros of a Quadratic Function

1. Complete the Chart.

		Direction		Number
Equation	Vertex	of Opening	Sketch	of Roots
$y = -6x^2 + 9$				
$y = \frac{3}{2}x^2 - 5$				
$y = -(x-3)^2 + 17$				
$y = 5\left(x+2\right)^2 + 4$				

2. Determine the number of roots for the following:

a) $y = 6x^2 - 3x$ b) $y = 2x^2 - 16x + 32$

c)
$$y = -4x^2 + 49$$
 d) $y = x^2 - 3x + 8$

The Quadratic Formula and the Discriminant

The quantity $b^2 - 4ac$ is called the **discriminant** of the quadratic equation $ax^2 + bx + c = 0$. From it we can determine the **nature of the roots** of the equation. It can also be used in **establishing conditions so that the roots have desired properties**.

The equation
$$ax^2 + bx + c = 0$$
 has two roots if $b^2 - 4ac$ is _____
The equation $ax^2 + bx + c = 0$ has one root if $b^2 - 4ac$ is _____
The equation $ax^2 + bx + c = 0$ has no roots if $b^2 - 4ac$ is _____

Ex 1: Determine the **nature of the roots** for each of the following quadratic equations: a) $x^2 + 4x + 5 = 0$ b) $3x^2 - 2x - 1 = 0$

Ex 2: Find the value(s) of k if: a) $kx^2 + 3x - 1 = 0$ has 2 distinct roots

b)
$$x^2 + kx + 25 = 0$$
 has 1 root

c) $x^2 + kx + 25 = 0$ has 2 roots

d) $kx^{2} + 12x + k = 0$ has no roots