Warm Up Solve the following:
a) $3 x^{2}-5 x+2=0$
b) $3 x^{2}-5 x+2 \leq 0$
c) $3 x^{2}-5 x+2>0$

Zeros of a Quadratic Function

1. Complete the Chart.

Equation	Vertex	Direction of Opening	Sketch	Number of Roots
$y=-6 x^{2}+9$				
$y=\frac{3}{2} x^{2}-5$				
$y=-(x-3)^{2}+17$				
$y=5(x+2)^{2}+4$				

2. Determine the number of roots for the following:
a) $y=6 x^{2}-3 x$
b) $y=2 x^{2}-16 x+32$
c) $y=-4 x^{2}+49$
d) $y=x^{2}-3 x+8$

The Quadratic Formula and the Discriminant

The quantity $b^{2}-4 a c$ is called the discriminant of the quadratic equation $a x^{2}+b x+c=0$. From it we can determine the nature of the roots of the equation. It can also be used in establishing conditions so that the roots have desired properties.

The equation $a x^{2}+b x+c=0$ has two roots if $b^{2}-4 a c$ is \qquad
The equation $a x^{2}+b x+c=0$ has one root if $b^{2}-4 a c$ is \qquad
The equation $a x^{2}+b x+c=0$ has no roots if $b^{2}-4 a c$ is \qquad

Ex 1: Determine the nature of the roots for each of the following quadratic equations:
a) $x^{2}+4 x+5=0$
b) $3 x^{2}-2 x-1=0$

Ex 2: Find the values) of k if:
a) $k x^{2}+3 x-1=0$ has 2 distinct roots
b) $x^{2}+k x+25=0$ has 1 root
c) $x^{2}+k x+25=0$ has 2 roots
d) $k x^{2}+12 x+k=0$ has no roots

