U2D5 T Quadratic Equations MCR 3UI

Monday, February 25, 2019

U2D5_T Quadratic...

U2D5 MCR 3UI

Solving Quadratic Equations

Warm Up

Simplify the following.

1.
$$4\sqrt{99} - 7\sqrt{12} + 3\sqrt{44} + 2\sqrt{75}$$

$$= 4\sqrt{9} - 7\sqrt{12} + 3\sqrt{44} + 2\sqrt{75}$$

$$= 4\sqrt{9} - 7\sqrt{12} + 3\sqrt{44} + 2\sqrt{75}$$

$$= 4\sqrt{3} - 7\sqrt{4} \times 3 + 3\sqrt{4} \times 11 + 2\sqrt{25} \times 3 = 4\sqrt{3} - 16\sqrt{3} + 10\sqrt{5} - 40$$

$$= 4\sqrt{3} - 7\sqrt{2} + 3\sqrt{44} + 2\sqrt{11} + 2\sqrt{25} \times 3 = 4\sqrt{3} - 16\sqrt{3} + 10\sqrt{5} - 40$$

$$= 12\sqrt{11} - 14\sqrt{3} + 6\sqrt{11} + 10\sqrt{3}$$

$$= 12\sqrt{11} - 14\sqrt{3} + 6\sqrt{11} + 10\sqrt{3}$$

$$= 12\sqrt{11} - 14\sqrt{3}$$

A quadratic equation is a quadratic function where y = 0. Solving a quadratic equation results in the roots or zeroes of the quadratic function. (finds all values of x that makes the equation true) To solve, FACTOR or use the QUADRATIC FORMULA (if it doesn't factor).

1. Solve, using the most efficient method.

a.
$$x^2 + 5x = 0$$

 $\chi(\chi + 5) = 0$
 $\chi = 0$ or $\chi + 5 = 0$
 $\chi = -5$

c.
$$x^2+16=0$$

DNF

 $x^2=-16$
 $x=\pm \sqrt{-16}$

no real

Solution

a.
$$x^2 + 5x = 0$$

 $\chi(\chi + 5) = 0$
 $\chi = 0$ or $\chi + 5 = 0$
 $\chi = -5$
b. $\chi^2 + 8x - 9 = 0$ m-9
A 8
 $(\chi + 9)(\chi - 1) = 0$
 $\chi + 9 = 0$ or $\chi - 1 = 0$
 $\chi = -9$

d.
$$(x+5)^2 - 81 = 0$$

 $(x+5-9)(x+5+9) = 0$
 $(x-4)(x+14) = 0$
 $x=4$ or $x=-14$
 $(x+5)^2 = 81$
 $x+5 = \pm \sqrt{81}$

$$x+5 = \pm \sqrt{81}$$

 $x = 5 \pm 9$
 $x = 5+9$ or $x = 5-9$
 $x = 14$

 $y - 4x^{2} - 4x - 3 = 0$ $4x^{2} - 4x - 3 = 0$ $4x^{2} - 4x - 3 = 0$ 2. Locate the roots for the following quadratic functions.

a.
$$y = 4x^2 - 4x - 3$$

b.
$$y = 2x^2 - 3x - 4$$

$$4x^2-4x-3=0$$

$$(2x+1)(2x-3)=0$$

$$ax+1=0$$

$$2x = -1$$

$$2x+1=0 \text{ or } 2x-3=0$$

$$2x=-1$$

$$x=-\frac{1}{2}$$

$$x=\frac{3}{2}$$

3. Solve the following quadratics using the Quadratic Formula

We need this formula for quadratic equations that do not factor.

$$If ax^2 + bx + c = 0$$

then
$$x$$
:

If
$$ax^2 + bx + c = 0$$
 then $x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$

So ... Let's try again

a.
$$2x^2 - 3x - 4 = 0$$

b.
$$y = 3x^2 - 5 - 6x$$

$$x = \frac{3 \pm \sqrt{9 - 4(a)(-4)}}{4}$$

$$\alpha = \frac{3 \pm \sqrt{9 - 4(a)(-4)}}{4}$$

$$\chi = \frac{3^{\pm}\sqrt{9+32}}{4}$$

$$\chi = \frac{3 \pm \sqrt{41}}{4}$$

$$\chi = \frac{3+\sqrt{41}}{4}$$
 or $\chi = \frac{3-\sqrt{41}}{4}$
exact answers.

$$3x^{2}-6x-5=0$$

$$x = \frac{6 \pm \sqrt{36-4(3)(-5)}}{6}$$

$$\chi = \frac{6 \pm \sqrt{36 + 60}}{6}$$

$$\chi = \frac{6 \pm \sqrt{96}}{6}$$

$$x = 6 \pm 4\sqrt{6}$$

c.
$$y = x^2 - 4x + 6$$

 $\chi^2 - 4\chi + 6 = 0$

$$\chi^2 - 4x + 6 = 0$$

$$\chi_{-}$$
 $\frac{4\pm\sqrt{16-4(1)(6)}}{2}$

$$\chi = \frac{4 \pm \sqrt{16-24}}{2}$$

$$\chi = \frac{4 \pm \sqrt{-8}}{2}$$
There is no

i there is no solution.

4. Solve for the values of x that satisfy the following equation.

$$(2x+1)^{2} + (2x+3)^{2} = 26$$

$$4x^{2} + 4x + 1 + 4x^{2} + 12x + 9 - 26 = 0$$

$$8(x^{2} + 16x - 16 = 0)$$

$$8(x^{2} + 2x - 2) = 0$$

$$x^{2} + 2x - 2 = 0$$

$$x = -2 \pm \sqrt{4 - 4(1)(-2)}$$

$$x = -2 \pm \sqrt{12}$$

$$x = -2 \pm \sqrt{12}$$

$$x = -1 + \sqrt{3}$$

$$x = -1 + \sqrt{3}$$

5. Narein throws a ball that will move through the air in a

parabolic path due to gravity.
The height, h, in metres, of the ball above the ground after t seconds can be modelled by the function

| For projectile problems, keep in mind:
| Object hits ground when the height = 0 m. |
| ii) If solving for "when" (the time) then need a height (h),
| if solving for a "how high" (height) then need a time (t).
| iii) Object reaches max height at the vertex! (not
| necessarily at the halfway point if object has an initial
| height not equal to zero.
| iv) Initial height of object can be found at t=0 s

$$h(t) = -4.9t^2 + 40t + 1.5.$$

Find the zeros (rounded to the nearest thousandth) of the

6. A rectangular lot is bounded on the side by a river and on the other three sides by fencing. Then another section of fencing is used to divide the lot into two parts as shown. A total of 80m of fencing is used. Determine all possible dimensions of the lot with a total area of 400 m².

U2D5 Workshee...

U2D5 MCR3UI Worksheet **Solving Quadratic Equations**

1. Determine the roots of each equation by factoring.

a)
$$x^2 + 5x + 4 = 0$$

b)
$$4x^2 - 9 = 0$$

c)
$$x^2 - 11x + 18 = 0$$

d)
$$2x^2 - 7x - 4 = 0$$

2. Use the quadratic formula to determine each of the roots to two decimal places.

a)
$$x^2 - 4x - 9 = 0$$

b)
$$3x^2 + 2x - 8 = 0$$

c)
$$-2x^2 + 3x - 6 = 0$$

d)
$$0.5x^2 - 2.2x - 4.7 = 0$$

- 3. i) For each equation, decide on a strategy to solve it and explain why you chose that strategy.
 - ii) Use your strategy to solve the equation. When appropriate, leave your answer in simplest radical form.

a)
$$2x^2 - 3x = x^2 + 7x$$
 b) $4x^2 + 6x + 1 = 0$

$$x^{2} + 6x + 1 = 0$$

c)
$$x^2 + 4x - 3 = 0$$

d)
$$(x+3)^2 = -2x$$

e)
$$3x^2 - 5x = 2x^2 + 4x$$

e)
$$3x^2 - 5x = 2x^2 + 4x + 10$$
 f) $2(x+3)(x-4) = 6x + 6$

4. Locate the x —intercepts of the graph of each function.

a)
$$f(x) = 3x^2 - 7x - 2$$

b)
$$f(x) = -4x^2 + 25x - 21$$

- 5. The flight of a ball hit from a tree that is 0.6 m tall can be modelled by the function $h(t) = -4.9t^2 + 6t + 0.6$ Where h(t) is the height in metres at time t seconds. How long will it take for the ball to hit the ground?
- 6. Determine the break-even quantities for each profit function, where x is the number sold, in thousands.

a)
$$P(x) = -x^2 + 12x + 28$$

b)
$$P(x) = -2x^2 + 18x - 40$$

c)
$$P(x) = -2x^2 + 22x - 17$$

d)
$$P(x) = -0.5x^2 + 6x - 5$$

- 7. A rectangular swimming pool measuring 10 m by 4 m is surrounded by a deck of uniform width. The combined area of the deck and the pool is 135 m². What is the width of the deck?
- 8. The sum of the squares of two consecutive integers is 685. What could the integers be? (list all possibilities)
- 9. Sally is standing on the top of a river slope and throws a ball. The height of the ball at a given time is modeled by the function $h(t) = -5t^2 + 30t + 10$, where h(t) is the height in metres and t is the time in seconds.
 - a) How long is the ball in the air, to the nearest tenth of a second? b) How high is the ball after 4 seconds?
- - c) When will the ball be 10m above the ground?
- d) What is the maximum height of the ball?
- 10. The height, h(t), in metres, of an object fired upwards from the ground at 50 m/s is given approximately by the equation $h(t) = -5t^2 + 50t$ where t seconds is the time since the object was launched.
 - a) Does an object fired upwards at 50 m/s reach a height of 150 m? If so, after how many seconds is the object at this height?
 - b) When will the object hit the ground?
- c) When does it reach its maximum height?
- 11. The population of an Ontario city is modeled by the function $P(t) = 0.5t^2 + 10t + 300$ where P(t) is the population in thousands and t is the time in years. (Note: t = 0 corresponds to the year 2000)
 - a) What was the population in 2000?
- b) What will be the population in 2012?
- c) When is the population expected to be 1,050,000?
- 12. The profit of a skateboard company can be modeled by the function $P(x) = -63 + 133x 14x^2$, where P(x) is the profit in thousands of dollars and x is the number of skateboards sold, also in thousands.
 - a) What is the maximum profit the company can earn?
 - b) Determine when the company is profitable by calculating the break-even points.
- 13. In Vancouver, the height, h, in kilometres, that you would need to climb to see to the east coast of Canada can be modelled by the equation $h^2 + 12740h = 20000000$. If the positive root of this equation is the solution, find the height, to the nearest kilometre.

a) (-4 -1) b) (29) c) (-3 3) d) (-1 4) 2 a) (-1 61 5 61)

*	0/(4, 1) 0/(2,5)	2 '2) 47 { 2 ') 2.0/(1.01, 3.01)	(2,3)	
3.	Easiest method	Roots	Easiest Method	Roots $\left\{\frac{-3 \pm \sqrt{5}}{4}\right\}$	
	a) Common Factoring	{0,10}	b) DNF Quadratic Formula		
	c) DNF – use Quadratic Formula	$\{-2 \pm \sqrt{7}\}$	d) DNF – use Quad. Formula	{-4 ± √7}	
	e) Simple Trinomial Factoring	{-1,10}	f) DNF – use Quad, Formula	$\{2 + \sqrt{19}\}$	

4. a) $\left\{\frac{7\pm\sqrt{73}}{6}\right\}$ b) $\left\{1, \frac{21}{4}\right\}$	5. ^{30±√1194} / ₄₉	or about 1.32 se	conds. 6. a) 14	000 unit
6. b) 4000 units or 50	00 units	6. c) 836 un	its or 10 164 unit	s
6.d) 901 units or 11 0	99 units	7. 2.5 m	819, -18 0	R 18,19
9. a) 6.3 seconds	b) 50 m	c) 6.2 sec.	d) 55 m	
10. a) no b) 10 sec.	c) 5 sec. 11. a)	300 000 b) 4	92 000 c) 2030	
12. a) \$252 875	b) 500 unit	s or 9000 unit	s 13. 1413 km	