1. Determine the roots of each equation by factoring.
a) $x^{2}+5 x+4=0$
b) $4 x^{2}-9=0$
c) $x^{2}-11 x+18=0$
d) $2 x^{2}-7 x-4=0$
2. Use the quadratic formula to determine each of the roots to two decimal places.
a) $x^{2}-4 x-9=0$
b) $3 x^{2}+2 x-8=0$
c) $-2 x^{2}+3 x-6=0$
d) $0.5 x^{2}-2.2 x-4.7=0$
3. i) For each equation, decide on a strategy to solve it and explain why you chose that strategy.
ii) Use your strategy to solve the equation. When appropriate, leave your answer in simplest radical form.
a) $2 x^{2}-3 x=x^{2}+7 x$ b
b) $4 x^{2}+6 x+1=0$
c) $x^{2}+4 x-3=0$
d) $(x+3)^{2}=-2 x$
e) $3 x^{2}-5 x=2 x^{2}+4 x+10$
f) $2(x+3)(x-4)=6 x+6$
4. Locate the x-intercepts of the graph of each function.
a) $f(x)=3 x^{2}-7 x-2$
b) $f(x)=-4 x^{2}+25 x-21$
5. The flight of a ball hit from a tree that is 0.6 m tall can be modelled by the function $h(t)=-4.9 t^{2}+6 t+0.6$ Where $h(t)$ is the height in metres at time t seconds. How long will it take for the ball to hit the ground?
6. Determine the break-even quantities for each profit function, where x is the number sold, in thousands.
a) $P(x)=-x^{2}+12 x+28$
b) $P(x)=-2 x^{2}+18 x-40$
c) $P(x)=-2 x^{2}+22 x-17$
d) $P(x)=-0.5 x^{2}+6 x-5$
7. A rectangular swimming pool measuring 10 m by 4 m is surrounded by a deck of uniform width. The combined area of the deck and the pool is $135 \mathrm{~m}^{2}$. What is the width of the deck?
8. The sum of the squares of two consecutive integers is 685 . What could the integers be? (list all possibilities)
9. Sally is standing on the top of a river slope and throws a ball. The height of the ball at a given time is modeled by the function $\boldsymbol{h}(t)=-5 t^{2}+30 t+10$, where $h(t)$ is the height in metres and t is the time in seconds.
a) How long is the ball in the air, to the nearest tenth of a second?
b) How high is the ball after 4 seconds?
c) When will the ball be 10 m above the ground?
d) What is the maximum height of the ball?
10. The height, $h(t)$, in metres, of an object fired upwards from the ground at $50 \mathrm{~m} / \mathrm{s}$ is given approximately by the equation $h(t)=-5 t^{2}+50 t$ where t seconds is the time since the object was launched,
a) Does an object fired upwards at $50 \mathrm{~m} / \mathrm{s}$ reach a height of 150 m ? If so, after how many seconds is the object at this height?
b) When will the object hit the ground?
c) When does it reach its maximum height?
11. The population of an Ontario city is modeled by the function $P(t)=0.5 t^{2}+10 t+300$ where $\mathrm{P}(t)$ is the population in thousands and t is the time in years. (Note: $t=0$ corresponds to the year 2000)
a) What was the population in 2000?
b) What will be the population in 2012?
c) When is the population expected to be $1,050,000$?
12. The profit of a skateboard company can be modeled by the function $P(x)=-63+133 x-14 x^{2}$, where $P(x)$ is the profit in thousands of dollars and x is the number of skateboards sold, also in thousands.
a) What is the maximum profit the company can earn?
b) Determine when the company is profitable by calculating the break-even points.
13. In Vancouver, the height, h, in kilometres, that you would need to climb to see to the east coast of Canada can be modelled by the equation $h^{2}+12740 h=20000000$. If the positive root of this equation is the solution, find the height, to the nearest kilometre.

U2D5 \quad Pgl

1. a)

$$
\begin{aligned}
& x^{2}+5 x+4=0 \\
& (x+1)(x+4)=0 \\
& x=-1 \text { or } x=-4
\end{aligned}
$$

c)

$$
\begin{aligned}
& 4 x^{2}-9=0 \\
& (2 x+3)(2 x-3)=0 \\
& x=-\frac{3}{2} \text { or } x=\frac{3}{2}
\end{aligned}
$$

2a)

$$
\begin{aligned}
& x^{2}-4 x-9=0 \\
& x=\frac{4 \pm \sqrt{16-4(1)(-9)}}{2} \\
& x=\frac{4 \pm \sqrt{52}}{2} \\
& x=\frac{4 \pm 2 \sqrt{13}}{2} \\
& x=2 \pm \sqrt{13}
\end{aligned}
$$

$x=5.61$ or $x=-1.61$
c)

$$
\begin{aligned}
& -2 x^{2}+3 x-6=0 \\
& 2 x^{2}-3 x+6=0 \\
& x=\frac{3 \pm \sqrt{9-4(2)(6)}}{4} \\
& \begin{aligned}
x & \text { note } \\
& =\text { no real } \\
& =222^{2} \\
& =2 \times 11)^{2} \\
\text { solutions. } & =4+1)^{2} \\
& =484
\end{aligned}
\end{aligned}
$$

for approxinate answers

$$
\begin{aligned}
& x=(22+\sqrt{1424}) \div 10 \\
& x=5.97
\end{aligned}
$$

(0R)

$$
\begin{aligned}
& x=(22-\sqrt{1424}) \div 10 \\
& x=-1.57
\end{aligned}
$$

b)

$$
\begin{array}{r}
x^{2}-11(x+18=0 \\
x-2(x-9)=0 \\
x=2 \text { or } x=9
\end{array}
$$

d)

$$
\begin{array}{lll}
2 x^{2}-7 x-4=0 & m-8 \\
(2 x+1)(x-4)=0 & A-7 \\
x=\frac{1}{2} \text { OR } x=4 & -8,1
\end{array}
$$

b)

$$
\begin{aligned}
& 3 x^{2}+2 x-8=0 \\
& x=\frac{-2 \pm \sqrt{4-4(3)(-8)}}{6} \\
& x=\frac{-2 \pm \sqrt{100}}{6} \\
& x=\frac{-2 \pm 10}{6}
\end{aligned}
$$

$x=-2$ or $x=\frac{4}{3}$
d)

$$
\begin{gathered}
0.5 x^{2}-2.2 x-4.7=0 \\
5 x^{2}-22 x-47=0
\end{gathered}
$$

$$
x=\frac{22 \pm \sqrt{22^{2}-4(5)(-47)}}{10}
$$

$$
x=\frac{22 \pm \sqrt{484+940}}{10}
$$

$$
x=\frac{22 \pm \sqrt{1424}}{10}
$$

$$
x=\frac{22 \pm \sqrt{16 \times 89}}{10}
$$

$$
x=\frac{22 \pm 4 \sqrt{89}}{10}
$$

$x=\frac{11 \pm 2 \sqrt{89}}{5} *$ exact
3. a) $2 x^{2}-3 x=x^{2}+7 x$

$$
x^{2}-10 x=0
$$

* easiest to common factor.

$$
\begin{gathered}
x(x-10)=0 \\
x=0 \text { (OR) } x=10
\end{gathered}
$$

C) $x^{2}+4 x-3=0$ INF use formula.

$$
\begin{aligned}
& x=\frac{-4 \pm \sqrt{16+12}}{2} \\
& x=\frac{-4 \pm \sqrt{28}}{2} \\
& x=\frac{-4 \pm 2 \sqrt{7}}{2} \\
& x=-2 \pm \sqrt{7}
\end{aligned}
$$

e)

$$
\begin{aligned}
& \text { e) } 3 x^{2}-5 x=2 x^{2}+4 x+10 \\
& x^{2}-9 x-10=0 \quad \mathrm{~m} \\
& \text { factors easily } \\
& \text { so do that (i) } \\
& \begin{array}{l}
(x-10)(x+1)=0 \\
x=10
\end{array} \text { (OR) } x=-1
\end{aligned}
$$

b) $4 x^{2}+6 x+1=0$ M, AD
easiest to use formula

$$
\begin{aligned}
& x=\frac{-6 \pm \sqrt{36-16}}{8} \\
& x=\frac{-6 \pm \sqrt{20}}{8} \\
& x=\frac{-6 \pm 2 \sqrt{5}}{8} \\
& x=\frac{-3 \pm \sqrt{5}}{4}
\end{aligned}
$$

d) $(x+3)^{2}=-2 x$

$$
\begin{aligned}
& x^{2}+6 x+9+2 x=0 \\
& x^{2}+8 x+9=0 \text { DNF }
\end{aligned}
$$

so use formula.

$$
\begin{aligned}
& x=\frac{-8 \pm \sqrt{64-36}}{2} \\
& x=\frac{-8 \pm \sqrt{28}}{2}
\end{aligned}
$$

$$
x=\frac{-8 \pm 2 \sqrt{7}}{2}
$$

$$
x=-4 \pm \sqrt{7}
$$

$$
\text { f) } \begin{aligned}
2(x+3)(x-4)=6 x+6 \\
2\left(x^{2}-x-12\right)-6 x-6=0 \\
2 x^{2}-2 x-24-6 x-6=0 \\
2 x^{2}-8 x-30=0 \\
x^{2}-4 x-15=0
\end{aligned}
$$

So use formula

$$
\begin{aligned}
& x=\frac{4 \pm \sqrt{16+60}}{2} \\
& x=\frac{4 \pm \sqrt{76}}{2} \\
& x=\frac{4 \pm 2 \sqrt{19}}{2} \\
& x=2 \pm \sqrt{19}
\end{aligned}
$$

4. a) $3 x^{2}-7 x-2=0 \quad m-6$

AC

$$
\begin{aligned}
x & =\frac{7 \pm \sqrt{49+24}}{6} \\
x & =\frac{7 \pm \sqrt{73}}{6} \\
(x=2.59 & 0.26)
\end{aligned}
$$

5.

$$
\begin{aligned}
& h(t)=-4.9 t^{2}+6 t+0.6 \\
& \text { set } h(t)=0 \\
& 49 t^{2}-60 t-6=0 \\
& t=\frac{60 \pm \sqrt{3600+196(6)}}{98} \\
& t=\frac{60 \pm \sqrt{4776}}{98} \\
& t=\frac{60 \pm 2 \sqrt{1194}}{98} \\
& t=\frac{30 \pm \sqrt{1194}}{49}
\end{aligned}
$$

$$
\text { so } t=\frac{30+\sqrt{1194}}{49}, t>0
$$

b)

$$
-4 x^{2}+25 x-21=0
$$

$$
\begin{array}{ll}
4 x^{2}-25 x+21=0 & m 84 \\
A-25
\end{array}
$$

factors!

$$
(x-1)(4 x-21)=0
$$

$$
x=\text { oe } x=\frac{21}{4}
$$

6. Break even means profit $=0$.
a)

$$
\begin{aligned}
&-x^{2}+12 x+28=0 \\
& x^{2}-12 x-28=0 \\
&x-14)(x+2)=0 \\
& x=140 x=-2 \\
& e x\{x \geqslant 0\}
\end{aligned}
$$

\therefore breakevenss 14000 units.
b)

$$
(t=1,32 \text { seconds, } t>0) .
$$

$$
\begin{aligned}
& -2 x^{2}+18 x-40=0 \\
& x^{2}-9 x+20=0 \\
& x=\frac{9 \pm \sqrt{81-80}}{2} \\
& x=\frac{9 \pm 1}{2} \\
& x=5 \text { or } x=4
\end{aligned}
$$

Break even is 5000 units ur 4000

$$
\text { c) } \begin{aligned}
& -2 x^{2}+22 x-17=0 \\
& x=\frac{2 x^{2}-22 x+17=0}{484-136} \\
& x=\frac{22 \pm \sqrt{348}}{4} \text { Break even } \\
& x=\frac{11 \pm \sqrt{87}}{2} \text { is } 10164 \text { units } \\
& \text { or } 836 \text { units. }
\end{aligned}
$$

bd)

$$
\begin{gathered}
-0,5 x^{2}+6 x-5=0 \quad 2 x-2 \\
x^{2}-12 x+10=0 \\
x=\frac{12 \pm \sqrt{144-40}}{2} \\
x=\frac{12 \pm \sqrt{104}}{2} \\
x=6 \pm \sqrt{26}
\end{gathered}
$$

Break even 11099 units or 901 units.

U2D5 Worksheet Solutions.
7.

$$
\begin{aligned}
& (2 x+10)(2 x+4)=135 \\
& 4 x^{2}+28 x+40-135=0 \\
& 4 x^{2}+28 x-95=0 \\
& x=\frac{-28 \pm \sqrt{28^{2}+16(95)}}{8} \\
& =\frac{-28 \pm \sqrt{2304}}{8} \\
& =\frac{-28 \pm 48}{8} \\
& x=-\frac{76}{8} \text { OR } x=\frac{20}{8} \Rightarrow x=\frac{10}{4} \\
& \\
& \text { inadmissible }^{\text {in }}
\end{aligned}
$$

\therefore the deck is $\frac{10}{4}$ or 2.5 m wide.
8. Let $x, x+1$ represent the integers.

$$
\begin{gathered}
x^{2}+(x+1)^{2}=685 \\
x^{2}+x^{2}+2 x-684=0 \\
2 x^{2}+2 x-684=0 \\
x^{2}+x-342=0 \\
(x+19)(x-18)=0 \\
x=-19 \text { or } x=18 \\
x+1=-18 \quad x+1=19
\end{gathered}
$$

\therefore the numbers are $-19,-18$ (OR) 18,19 .
9. $h(t)=-5 t^{2}+30 t+10$
a)

$$
\begin{aligned}
& \operatorname{set} h=0 \\
&-5\left(t^{2}-6 t-2\right)=0 \\
& t^{2}-6 t-2=0 \\
& t=\frac{6 \pm \sqrt{36-4(-2)}}{2} \\
& t=\frac{6 \pm \sqrt{44}}{2} \\
& t=\frac{6 \pm 2 \sqrt{11}}{2} \\
& t=3 \pm \sqrt{11}
\end{aligned}
$$

$$
\begin{array}{ll}
{ }^{t} t=3+\sqrt{11} & \text { or } \\
t=3-\sqrt{11} \\
t \doteq 6.31 \ldots & t \doteq-0.31 \ldots \\
t \doteq 6.3 & t \doteq-0.3 \\
& \\
& t \text { ind. }
\end{array}
$$

\therefore it will be in the air about 6.3 seconds.

U2D5
ab)

$$
\begin{aligned}
h(4) & =-5(4)^{2}+30(4)+10 \\
& =-80+120+10 \\
& =50
\end{aligned}
$$

\therefore Ball is 50 m in air at 4 seconds.
C)

$$
\begin{aligned}
& -5 t^{2}+30 t+10=5 \quad(\text { seth }(t)=5 \text { metres) } \\
& t^{2}-6 t-1=0 \\
& t=\frac{6 \pm \sqrt{36-4(1)(-1)}}{2} \\
& t=\frac{6 \pm \sqrt{40}}{2} \\
& t=\frac{2(3 \pm \sqrt{10})}{2} \\
& t=3 \pm \sqrt{10} \\
& t=6.162 \ldots \text { OR } t=-0.162 \ldots
\end{aligned}
$$

Tinad.
\therefore the ball will be 10 m above the ain after about 6.2 seconds ($3+\sqrt{10}$ seconds).
d)

$$
\begin{aligned}
& h(t)=-5 t(t-6)+10 \\
& \text { max height is at } t=\frac{0+6}{2} \\
& t=3 \text { seconds. } \\
& h(3)=-5(3)(-3)+10 \\
&=45+10 \\
&=55 \mathrm{~m}
\end{aligned}
$$

(10. a) Does $h(t)$ ever equal 150 ?

$$
\begin{aligned}
& -5 t^{2}+50 t=150 \\
& t^{2}-10 t+30=0 \\
& =\frac{10 \pm \sqrt{100-4(30)}}{2}
\end{aligned}
$$

$b^{2}-4 a c i^{2}-20$ so there is no real solution.
\therefore the object never reaches 150 m .
b) $h(t)=0$ when $t=$?

$$
t(t-10)=0
$$

\therefore object

$$
\begin{gathered}
-5 t^{2}+50 t=0 \\
t^{2}-10 t=0
\end{gathered} \quad t=0, t=10
$$ ground after 10 seconds.

U2D5
$10 \mathrm{c})$

$$
\begin{aligned}
h(t) & =-5\left(t^{2}-10 t+25-25\right) \\
& =-5(t-5)^{2}+125
\end{aligned}
$$

\therefore it reaches maximum after 5 seconds.
11. $P(t)=0.5 t^{2}+10 t+300 \quad$ Pin thousands
a) $P(0)=300$
initial population was 300000 .
b)

$$
\begin{aligned}
P(12) & =0.5(144)+120+300 \\
& =72+420 \quad \therefore 2012 \rightarrow \text { pop } \\
& =492492000
\end{aligned}
$$

c) $P(t)=1050$ when $t=$?
remember P in thousands so 1050000 means

$$
\begin{align*}
& 0.5 t^{2}+10 t+300=1050 \quad P=1050 . \\
& t^{2}+20 t-1500=0 \tag{array}\\
& t+50)(t-30=0 \\
& t=-50, t=30 .
\end{align*}
$$

\therefore in year 2030 pop n will be 1050000
\therefore in year 2030 pop n will
if trend continues.
in thousands, x in thousands.
\therefore in year 2030 pop n will
if trend continues.
(2.a)P in thousands, x in thousands,

$$
\begin{gathered}
P(x)=-14 x^{2}+133 x-63 \\
=-14 x(x-9.5)-63 \\
\text { at max, } x=\frac{0+9.5}{2} \\
x=4.75
\end{gathered}
$$

\therefore the maximum profit is $\$ 252875$.
b) $\operatorname{set} P(x)=0$

$$
\begin{array}{r}
-14 x^{2}+133 x-63=0 \\
14 x^{2}-133 x+63=0
\end{array}
$$

12b)

$$
\begin{aligned}
& x=\frac{133 \pm \sqrt{133^{2}-4(14)(63)}}{28} \\
& x=\frac{133 \pm \sqrt{14161}}{28} \\
& x=\frac{133 \pm 119}{28} \\
& x=\frac{252}{28} \text { oR } x=\frac{14}{28} \\
& x=9
\end{aligned} \quad x=\frac{1}{2} .
$$

$\therefore 9000$ units or 500 units will produce a break-even point.
13. $\quad h^{2}+12740 h-20000000=0$

$$
\begin{aligned}
& h=\frac{-12740 \pm \sqrt{12740^{2}-4(1)(-20000000)}}{2} \\
& h=\frac{-12740 \pm \sqrt{242307600}}{2} \\
& h=-\frac{12740+\sqrt{242307600}}{2}, h>0 . \\
& h=1413.116 \\
& h \div 1413 \mathrm{~km} .
\end{aligned}
$$

