U2D5 MCR3UI

Solving Quadratic Equations

- 1. Determine the roots of each equation by factoring. a) $x^2 + 5x + 4 = 0$ b) $4x^2 - 9 = 0$ c) $x^2 - 11x + 18 = 0$ d) $2x^2 - 7x - 4 = 0$
- 2. Use the quadratic formula to determine each of the roots to two decimal places. a) $x^2 - 4x - 9 = 0$ b) $3x^2 + 2x - 8 = 0$ c) $-2x^2 + 3x - 6 = 0$ d) $0.5x^2 - 2.2x - 4.7 = 0$

3. i) For each equation, decide on a strategy to solve it and explain why you chose that strategy.

- ii) Use your strategy to solve the equation. When appropriate, leave your answer in simplest radical form.
- a) $2x^2 3x = x^2 + 7x$ b) $4x^2 + 6x + 1 = 0$ c) $x^2 + 4x - 3 = 0$ d) $(x + 3)^2 = -2x$ e) $3x^2 - 5x = 2x^2 + 4x + 10$ f) 2(x + 3)(x - 4) = 6x + 6

4. Locate the x --intercepts of the graph of each function. a) $f(x) = 3x^2 - 7x - 2$ b) $f(x) = -4x^2 + 25x - 21$

- 5. The flight of a ball hit from a tree that is 0.6 m tall can be modelled by the function $h(t) = -4.9t^2 + 6t + 0.6$ Where h(t) is the height in metres at time t seconds. How long will it take for the ball to hit the ground?
- 6. Determine the break-even quantities for each profit function, where x is the number sold, in thousands. a) $P(x) = -x^2 + 12x + 28$ b) $P(x) = -2x^2 + 18x - 40$ c) $P(x) = -2x^2 + 22x - 17$ d) $P(x) = -0.5x^2 + 6x - 5$
- A rectangular swimming pool measuring 10 m by 4 m is surrounded by a deck of uniform width. The combined area of the deck and the pool is 135 m². What is the width of the deck?
- 8. The sum of the squares of two consecutive integers is 685. What could the integers be? (list all possibilities)
- 9. Sally is standing on the top of a river slope and throws a ball. The height of the ball at a given time is modeled by the function $h(t) = -5t^2 + 30t + 10$, where h(t) is the height in metres and t is the time in seconds.
 - a) How long is the ball in the air, to the nearest tenth of a second? b) How high is the ball after 4 seconds?
 - c) When will the ball be 10m above the ground? d) What is the maximum height of the ball?
- 10. The height, h(t), in metres, of an object fired upwards from the ground at 50 m/s is given approximately by the equation $h(t) = -5t^2 + 50t$ where t seconds is the time since the object was launched.
 - a) Does an object fired upwards at 50 m/s reach a height of 150 m? If so, after how many seconds is the object at this height?
 - b) When will the object hit the ground? c) When does it reach its maximum height?
- 11. The population of an Ontario city is modeled by the function $P(t) = 0.5t^2 + 10t + 300$ where P(t) is the population in thousands and t is the time in years. (Note: t = 0 corresponds to the year 2000)
 - a) What was the population in 2000? b) What will be the population in 2012?
 - c) When is the population expected to be 1,050,000?
- 12. The profit of a skateboard company can be modeled by the function $P(x) = -63 + 133x 14x^2$, where P(x) is the profit in thousands of dollars and x is the number of skateboards sold, also in thousands.
 - a) What is the maximum profit the company can earn?
 - b) Determine when the company is profitable by calculating the break-even points.
- 14. In Vancouver, the height, h, in kilometres, that you would need to climb to see to the east coast of Canada can be modelled by the equation $h^2 + 12740h = 2000000$. If the positive root of this equation is the solution, find the height, to the nearest kilometre.

ANSWERS: