U2D3a_T Quadratic Function Properties MCR 3UI

Thursday, February 21, 2019 5:56 PM

U2D3a_T Quadratic...

When the optimal value occurs

y-intercept $\mathcal{P}(\Delta)$

Calculate the first and second differences for the following table.

No. First Differences are not constant,

Ves. Second Differences are constant.

What is the direction of opening?
Why?
Since a >0, opens up.

NOTE:

a = second diff. = 2

or 2a = second diff.

When graph is quadratic.

Graphing: Graph the following.

U2D3b_T Partial Fa...

U2D3b MCR 3UI

QUADRATIC FUNCTIONS

Partial Factored Form

 Used to find two points that are equidistant to the axis of symmetry, which then can be used to find the vertex

Steps:

- 1. Common factor only the first two terms of the standard form expression $y = ax^2 + bx + c$.
- 2. Determine the two values of x that will make the factored part of the expression equal to zero.

Note: the y value will be the same for these two values of x (and actually, they will be equal to the c term of the standard form expression.

Example $y = (-3x)^2 + 12x + 12$

direction of opening DOWN

y-int 🖰

2 points equidistant to the axis of symmetry (0,c), (d,c)

When the optimal value occurs

vertex

Graphing: Graph the following.

a)
$$y = -3x(x-2) + 4$$

a)
$$y = -3x(x-2) + 4$$
(0,4) (1,2,4)

$$f(1) = -3(1)(1-2)+4$$

= -3(1)(-1)+4

b)
$$y = \frac{7}{2}x^2 - 8x - 2$$

<u>In General</u>

$$y = a(x - h)^2 + k$$

Standard Form

$$y = ax^2 + bx + c$$

Partial Factored Form

$$y = ax(x-d) + c$$

Factored Form

$$y = a(x-s)(x-t)$$