U2D3a_T Quadratic Function Properties MCR 3UI

Summary Of Quadratic Functions
(Everything you should know but may have forgotten)

1. Vertex Form

Example $g(x)=-\frac{1}{2}(x+1)^{2}-10$
State:

2. Standard Form

Example $f(x)=-3 x^{2}-18 x+11$
State:
direction of opening
DOWN

$$
\begin{array}{r}
y=a x^{2}+b x+c \\
\text { vint } y=c \\
y=11 \quad(0,11) \\
\\
\quad f(0)=11
\end{array}
$$

3.

$$
h=\frac{\text { Factored Form }}{2} \quad k=f(h)
$$

Example $y=3(x-4)(x+2)$
State:

$$
y=a(x-\Delta)(x-t)
$$

direction of opening $a=3$

So,

Axis of Symmetry $x=\frac{\Delta+t}{2}$

$$
x=\frac{4+(-2)}{2}
$$

When the optimal value occurs $\underset{\sim}{\leftarrow} h=1$
When the optimal value occurs

$$
x=1
$$

y-intercept $f(0)$

$$
y=3(0-4)(0+2)
$$

Difference Tables $=-24$
roots/x-intercepts/zeros

$$
\begin{aligned}
& x=A, x=t \\
& x=4, x=-2
\end{aligned}
$$

Max/Min

$$
\ddot{u} \Rightarrow \min -27
$$

$$
\begin{aligned}
& \text { vertex }\left(h, f^{\prime \prime}(n)\right)=f(1) \\
&=3(-3)
\end{aligned}
$$

$$
=3(-3)(3)
$$

$$
\text { Range: },-\alpha 1)=-27
$$

$$
\{y \geq-27\}
$$

Calculate the first and second differences for the following table.

| x | Y | First
 Diff. | Second
 Diff |
| :---: | :---: | :---: | :---: | :---: |
| -2 | 22 | -10 | 4 |
| -1 | 12 | -6 | 4 |
| 0 | 6 | 2 | 4 |
| 1 | 4 | 2 | 4 |
| 2 | 6 | 6 | 2 |
| 3 | 12 | | 2 |

Is this relation linear? Why?
No. First Differences are not constant.

Is this relation quadratic? Why? Yes. Second Differences are constant.

What is the direction of opening? Why?
Since $a>0$, opens up.
NOTE:
$a=$ second diff. $\div 2$
or $2 a=$ second diff.
when graph is quadratic.

Graphing: Graph the following.

b) $y=-2 x^{2}+6 x+8$
$y=-2\left(x^{2}-3 x-4\right) \quad h=\frac{4-1}{2}$

Partial Factored Form

$$
y=a x(x-d)+c
$$

- Used to find two points that are equidistant to the axis of symmetry, which then can be used to find the vertex

Steps:

1. Common factor only the first two terms of the standard form expression $y=a x^{2}+b x+c$.
2. Determine the two values of x that will make the factored part of the expression equal to zero.
Note: the y value will be the same for these two values of x (and actually, they will be equal to the \underline{c} term of the standard form expression.

Example $y=-3 x)^{2}+12 x+12$

$$
\begin{gathered}
y=-3 x(x-4)+12 \\
-\frac{b}{a} d=-\frac{b}{a}
\end{gathered}
$$

State:
direction of opening DOWN y-int C
2 points equidistant to the axis of symmetry $(0, C),(d, c)$
Axis of symmetry $x=\frac{d}{2}$ max/ min $f\left(\frac{d}{2}\right)$

$$
\begin{array}{ll}
x=\frac{4}{2}-x=\frac{a}{2} & f(2)=-3(2)(-2)+12
\end{array}
$$

When the optimal value occurs

In General

Vertex Form

$y=a(x-h)^{2}+k$

Partial Factored Form

$$
y=a x(x-d)+c
$$

Standard Form
$y=a x^{2}+b x+c$

Factored Form
$y=a(x-s)(x-t)$

