U2D2_T Functions-vs-relations and Function Notation MCR 3UI

U2D2_T Functions...

U2D2 MCR 3UI Functions Versus Relations

A relation is a set of ordered components (often ordered pairs).
Relations can be expressed as:

1. $B=\left\{(4,-2),(3,11),\left(\pi, \frac{3}{4}\right)\right\}$ set
2.

3.

4. $y=2 x^{2}-1 \quad$ equation
5.

A function is relation in which no two ordered pairs have the same first component. (ie, A function is a relation such that to each value of the independent variable there corresponds only one value of the dependent variable.)

A function is a special type of relation. All functions are relations, but not all relations are functions.
Domain is the set of all possible values of the independent variable (all 1 -values) Range is the set of all possible values of the dependent variable (ally-values)

1. Determine if the following relations are

 (Yes - it is a function, $\mathrm{No}-\mathrm{it}$ is not a function). State the domain and range fo (a) - (d) (h)а) $B=\{(\underline{1}, 3),(\underline{4}, 5),(\underline{6}, 7),(\underline{9}, 11)\}$ Yes
$D:\{1,4,6,9\} \quad R:\{3,5,7,11\}$

$$
Q=\{(-7,3),(14,-5),(-7,7),(89,11),(1,4)\} \text { № }
$$

$D:\{-7,1,14,89\} \quad R:\{-5,3,4,7,11\}$
$P=\{(-7,3),(14,3),(7,3),(89,3),(1,3)\}$ Yes
$D:\{-7,1,7,14,89\} \quad R:\{3\}$
b)

The Vertical Line Test

If a vertical line can be drawn between any 2 points on a graph, the graph is not a function.
2. Identify whether the given equations are functions or relations. HINT: You may draw a graph and use the vertical line test.
a) $y=3 x+5$ function (sloped line)
b) $x^{2}+y^{2}=16$
not a function (relation) (circle)
d) $y=3$ \qquad e) $x=8$
c) $y=2 x^{2}+4 x-3$

U function (horizontal line)
relation
(vertical line)

1. The equation $y=x^{2}+5 x-4$ can also be written using function notation as $f(x)=x^{2}+5 x-4$.
Evaluate the following:
a. $f(-3)=(-3)^{2}+5(-3)-4$
b.

$$
\begin{aligned}
& =9-15-4 \\
& =-10
\end{aligned}
$$

$$
\begin{aligned}
f\left(\frac{1}{2}\right) & =\left(\frac{1}{2}\right)^{2}+5\left(\frac{1}{2}\right)-4 \\
& =\frac{1}{4}+\frac{5}{2}-\frac{4}{1} \\
& =\frac{1+10-16}{4} \\
& =\frac{-5}{4}
\end{aligned}
$$

c. x , when $\frac{y}{f(x)}=10$

$$
\text { d. } f(a+1)
$$

Solve for x when $y=10$

$$
\begin{aligned}
& x^{2}+5 x-4=10 \\
& x^{2}+5 x-14=0 \\
& (x+7)(x-2)=0 \\
& x=-7 \text { or } x=2
\end{aligned}
$$

$$
\begin{aligned}
& =(a+1)^{2}+5(a+1)-4 \\
& =a^{2}+2 a+1+5 a+5-4 \\
& =a^{2}+7 a+2
\end{aligned}
$$

2. Now consider $g(x)=3 x-2$ a) well as $f(x)=x^{2}+5 x-4$.
a. Evaluate $f(2)-g(3)$
b. Simplify: $2 f(x)-g(-x)$

$$
\begin{aligned}
& \left.=(2)^{2}+5(2)-4-[3(3)-2]\right]=2\left[x^{2}+5 x-4\right]-[3(-x)-2] \\
& =4+10-4-(7) \quad \begin{array}{l}
=2 x^{2}+10 x-8-(-3 x-2) \\
=3 \\
=2 x^{2}+10 x-8+3 x+2 \\
=2 x^{2}+13 x-6
\end{array} \\
& =3
\end{aligned}
$$

3. Consider the following graphs of $y=f(x)$ and $y=g(x)$.

Use the graphs to evaluate the following.
a. $f(-3)=0$
b. $f(-2)=1$
c. $f(-4)=1$
d. $g(0)=2$
e. $g(1)=1$
f. $g(2)+f(-4)$
g. What is x when $f(x)=4$?

$$
\begin{aligned}
& =0+1 \\
& =1
\end{aligned}
$$

$$
x=-5 \text { or } x=-1
$$

