A relation is a set of ordered components (often ordered pairs).

Relations can be expressed as:
$B=\left\{(4,-2),(3,11),\left(\pi, \frac{3}{4}\right)\right\}$

x	y
0	1
1	4
2	7

$$
y=2 x^{2}-1
$$

A function is relation in which no two ordered pairs have the same first component. (ie. A function is a relation such that to each value of the independent variable there corresponds only one value of the dependent variable.)
A function is a special type of relation. All functions are relations, but not all relations are functions.

Domain is the set of all possible values of the independent variable (all x-values) Range is the set of all possible values of the dependent variable (all y-values)

1. Determine if the following relations are functions.

State the domain and range for (a) - (d)
a) $B=\{(1,3),(4,5),(6,7),(9,11)\}$
$D:\{1,3,4,6,9\} \quad R:\{$

$$
Q=\{(-7,3),(14,-5),(-7,7),(89,11),(1,4)\}
$$

$$
R=\{(-7,3),(14,3),(7,3),(89,3),(1,3)\}
$$

b)

c)

d)

e)

f)

g)

h)

The Vertical Line Test

If a vertical line can be drawn between any 2 points on a graph, the graph is not a function.
2. Identify whether the given equations are functions or relations. HINT: You may draw a graph and use the vertical line test.
a) $y=3 x+5$
b) $x^{2}+y^{2}=16$
c) $y=2 x^{2}+4 x-3$
d) $y=3$
e) $x=8$

FUNCTION NOTATION: Revisited

1. The equation $y=x^{2}+5 x-4$ can also be written using function notation as $f(x)=x^{2}+5 x-4$.
Evaluate the following:
a. $f(-3)$
b. $f\left(\frac{1}{2}\right)$
c. x , when $f(x)=10$
d. $f(a+1)$
2. Now consider $g(x)=3 x-2$ as well as $f(x)=x^{2}+5 x-4$.
a. Evaluate $f(2)-g(3)$.
b. Simplify: $2 f(x)-g(-x)$
3. Consider the following graphs of $y=f(x)$ and $y=g(x)$.

Use the graphs to evaluate the following.
a. $f(-3)$
b. $f(-2)$
c. $f(-4)$
d. $g(0)$
e. $g(1)$
f. $g(2)+f(-4)$

g. What is x when $f(x)=4$?

