A relation is a set of ordered components (often ordered pairs).

A **function** is relation in which no two ordered pairs have the same first component. (ie. A function is a relation such that to each value of the independent variable there corresponds only one value of the dependent variable.)

A function is a special type of relation. All functions are relations, but not all relations are functions.

Domain is the set of all possible values of the independent variable (all x-values) **Range** is the set of all possible values of the dependent variable (all y-values)

1. Determine if the following relations are functions. State the domain and range for (a) - (d)

- a) $B = \{(1,3), (4,5), (6,7), (9,11)\}$
- D:{1, 3, 4, 6, 9} R:{ $Q = \{(-7,3), (14, -5), (-7,7), (89, 11), (1,4)\}$

$$R = \{(-7,3), (14,3), (7,3), (89,3), (1,3)\}$$

<u>The Vertical Line Test</u>

If a vertical line can be drawn between any 2 points on a graph, the graph is not a function.

2. Identify whether the given equations are functions or relations. HINT: You may draw a graph and use the vertical line test.

a)
$$y = 3x + 5$$
 b) $x^2 + y^2 = 16$

c)
$$y = 2x^2 + 4x - 3$$
 d) $y = 3$ e) $x = 8$

FUNCTION NOTATION: Revisited

1. The equation $y = x^2 + 5x - 4$ can also be written using function notation as $f(x) = x^2 + 5x - 4$. Evaluate the following: a. f(-3) b. $f(\frac{1}{2})$ c. x, when f(x) = 10 d. f(a+1)

2. Now consider g(x) = 3x - 2 as well as $f(x) = x^2 + 5x - 4$. a. Evaluate f(2) - g(3). b. Simplify: 2f(x) - g(-x)

