Warm Up: Simplify.

a) $\sqrt{5} \times \sqrt{5}$ b) $(2\sqrt{5})(5\sqrt{5})$ c) $(2-\sqrt{5})(2+\sqrt{5})$

d) $(2\sqrt{3} - \sqrt{5})(2\sqrt{3} + \sqrt{5})$ e) $\sqrt{y} \times \sqrt{y}$

f)
$$(a\sqrt{b} + c\sqrt{d})(a\sqrt{b} - c\sqrt{d})$$

 Reminder: To be fully simplified, an expression cannot contain a radical in the denominator. To

 eliminate the radical, we ________ the denominator.

 ✓ To rationalize a _______ denominator, multiply by the _______ in the denominator.

 ✓ To rationalize a _______ denominator, multiply by the _______. Then simplify.

 ✓ To rationalize a _______ denominator, multiply by the _______. Then simplify.

✓ To rationalize a _______. denominator, multiply by the ______. Then simplify.
 Note: A conjugate is formed by changing the sign between the two terms in a binomial. Ex.) 3x − 1 is the conjugate of 3x + 1.

Example 1. Rationalize the Denominator.

b)
$$\frac{3}{4\sqrt{11}}$$

c)
$$\frac{7}{2\sqrt{6}-\sqrt{3}}$$

a) $\frac{\sqrt{5}}{\sqrt{7}}$

d)
$$\frac{\sqrt{5}+\sqrt{2}}{\sqrt{5}+3\sqrt{7}}$$