U2D10 MCR3UI Worksheet Systems of Equations Involving Quadratics

1. Determine the point(s) of intersection algebraically.
a) $f(x)=-x^{2}+6 x-5, g(x)=-4 x+19$
b) $f(x)=2 x^{2}-1, g(x)=3 x+1$
c) $f(x)=3 x^{2}-2 x-1, g(x)=-x-6$
2. Determine the number of points of intersection of $f(x)=4 x^{2}+x-3$ and $g(x)=5 x-4$ without solving.
3. Determine the point(s) of intersection of each pair of functions.
a) $f(x)=-2 x^{2}-5 x+20, g(x)=6 x-1$
b) $f(x)=3 x^{2}-2, g(x)=x+7$
c) $f(x)=5 x^{2}+x-2, g(x)=-3 x-6$
4. The revenue function for a production by a theatre group is $R(t)=-50 t^{2}+300 t$, where t is the ticket price in dollars. The cost function for the production is $C(t)=600-50 t$. Determine the ticket price that will allow the production to break even.
5. Determine the value of k such that $g(x)=3 x+k$ intersects the quadratic function $f(x)=2 x^{2}-5 x+3$ at exactly one point.
6. Determine the value(s) of k such that the linear function $g(x)=4 x+k$ does not intersect the parabola $f(x)=-3 x^{2}-x+4$.
7. Determine through investigation, the equations of lines that have a slope of 2 and intersect the quadratic function $f(x)=x(x-6)$
a) Once
b) Twice
c) Never
8. Solve algebraically. You may confirm graphically.
a) $y=3-x ; y=x^{2}-8 x+13$
b) $g(x)=4 x-1 ; f(x)=-2 x^{2}+4 x+1$
c) $12 x-4 y=19 ; y=3 x^{2}-12 x+14$
d) $2 x-3 y=-6 ; \quad y=-3 x^{2}+24 x-50$
e) $h(x)=2 x^{2}+3 ; g(x)=x^{2}-2 x+7$
f) $h(x)=-2 x^{2}+24 x-69 ; g(x)=x^{2}-10 x+27$
9. An asteroid is moving in a parabolic arc that is modelled by the function
$y=-6 x^{2}-370 x+100900$. For the period of time that it is in the same area, a space probe is moving along a straight path on the same plane as the asteroid according to the linear equation $y=y=500 x-83024$. A space agency needs to determine if the asteroid will be an issue for the space probe. Wil the two paths intersect?
10. The UV index on a sunny day can be modelled by the function $f(x)=-0.15(x-13)^{2}+7.6$ where x represents the time of day on a 24-hour clock and $f(x)$ represents the UV index. Between what hours was the UV index greater than 7 ?
11. A parachutist jumps from an airplane and immediately opens his parachute. His altitude, y, in metres, after t seconds is modelled by the equation $y=-4 t+300$. A second parachutist jumps 5 s later and freefalls for a few seconds. Her altitude, in metres, during this time, is modelled by the equation $y=-4.9(t-5)^{2}+300$. When does she catch up to the first parachutist?

Answers:

1. a) $\{(4,3),(6,-5)\}$
b) $\left\{(2,7),\left(-\frac{1}{2},-\frac{1}{2}\right)\right\}$
c) no intersection
2. one
3. a) $\left\{\left(\frac{3}{2}, 8\right),(-7,-43)\right\}$
b) $\left\{\left(\frac{1+\sqrt{109}}{6}, \frac{43+\sqrt{109}}{6}\right),\left(\frac{1-\sqrt{109}}{6}, \frac{43-\sqrt{109}}{6}\right)\right\}$
c) no intersection
d) $\left\{\left(\frac{-7+\sqrt{33}}{8}, \frac{-3+5 \sqrt{33}}{8}\right),\left(\frac{-7-\sqrt{33}}{8}, \frac{-3-5 \sqrt{33}}{8}\right)\right\}$
4. $\$ 3$ or $\$ 4$
5. $k=-5$
6. $k>\frac{73}{12}$
7. a) $y=2 x-16$
b) $y=2 x+b, b>-16$
c) $y=2 x+b, b<-16$
8. a) $\{(2,1),(5,-2)\}$
b) $\{(1,3),(-1,-5)\}$
c) $\left\{\left(\frac{5}{2}, \frac{11}{4}\right)\right\}$
d) no real solution
e) $\{(-1+\sqrt{5}, 15-4 \sqrt{5}),(-1-\sqrt{5}, 15+4 \sqrt{5})\}$
f) $\left\{(6,3),\left(\frac{16}{3}, \frac{19}{9}\right)\right\}$
9. $D>0$ so they will intersect.
10. From 11:00 a.m. until 3:00 p.m.
11. 7.5 seconds after the first parachutist jumps (2.5 seconds after she jumps)
