U1D8_T Equivalent Algebraic Expressions and Function Notation
Monday, February 4, 2019 9:23 AM

U1D8_T
Equivalen...

U1D8 MCR 3UI Function Notation and Equivalent Algebraic Expressions
Warm Up:
Simplify and state restrictions for:
a) $\frac{3 x}{6 x^{2}-x-2}+\frac{2 x}{10 x^{2}-x-3}$ ${ }_{10}^{1} 25_{2}^{2} x_{1}^{1} 3$

$$
\begin{aligned}
& =\frac{3 x}{(2 x+1)(3 x-2)}+\frac{2 x}{(2 x+1)(5 x-3)} \\
& =\frac{3 x(5 x-3)+2 x(3 x-2)}{(2 x+1)(3 x-2)(5 x-3)} \\
& =\frac{15 x^{2}-9 x+6 x^{2}-4 x}{(2 x+1)(3 x-2)(5 x-3)} \\
& =\frac{6}{y}-\frac{4(x-1)\left(9 y^{4}\right)}{3 y^{5}(x-1)(x+1)}=\frac{21 x^{2}-13 x}{(2 x+1)(3 x-2)(5 x-3)} \\
& =\frac{x \neq-1, \frac{2}{3}, \frac{3}{5}}{y}-\frac{12}{y(x+1)}=\begin{array}{l}
\frac{6 x-4}{3 y^{5}} \times \frac{9 y^{4}}{x^{2}-1} \\
=\frac{6(x+1)}{y(x+1)}=\frac{6 x+6-12}{y(x+1)} \\
=\frac{6 x-6}{y(x+1)} \\
y \neq 0, x \neq \pm 1
\end{array}
\end{aligned}
$$

Function Notation

Function Notation allows us to name a function and \qquad differentiate between them. For example: "f at x " OR " f of x "

1. $f(x)=x^{2}-3 x+4$ rather than $y=x^{2}-3 x+4$
2. $g(x)=6 x^{2}+x-2 \quad$ rather than $y=6 x^{2}+x-2$
3. $h(x)=-5(x+2)(x-1) \quad$ rather than $y=-5(x+2)(x-1)$

Calculate the following:
a) $f(2)$ if $f(x)=x^{2}-3 x+4$

Tevaluate $f(x)$ when $x=2$
(sub. $x=2$ into the expression and

$$
\begin{aligned}
& f(2)=(2)^{2}-3(2)+4 \\
& f(2)=4-6+4 \\
& f(2)=8-6 \\
& f(2)=2
\end{aligned}
$$

$$
\therefore f(2)=2
$$

i.e. $(2,2)$ is a
point on the graph.
b) $h(-1)$ if $h(x)=-5(x+2)(x-1)$

$$
h(-1)=-5(-1+2)(-1-1)
$$

$$
h(-1)=-5(1)(-2)
$$

$h(-1)=10 \leftarrow$ means $(-1,10)$ is a point on the parabola

Equivalent Algebraic Expressions
Determine whether $g(x)$ is the simplified version of $f(x)$. If it is, then state the restrictions needed.

1. $f(x)=\frac{x^{2}-2 x-15}{x^{2}-x-20}$ and $g(x)=\frac{x+3}{x+4}, x \neq-4$

$$
\begin{aligned}
& f(x)=\frac{(x-5)(x+3)}{(x-5)(x+4)} \\
& f(x)=\frac{x+3}{x+4}, x \neq-4,5
\end{aligned}
$$

$\therefore f(x)=g(x)$
provided $x \neq-4,5$

$$
\begin{aligned}
& m-12 \\
& A 1_{4} 1^{-3}
\end{aligned}
$$

2. $f(x)=\frac{6 x^{2}+x-2}{2 x-1}$ and $g(x)=\frac{3 x^{2}-x-2}{x-1}$

$$
\begin{aligned}
& f(x)=\frac{(3 x+2)(2 x-1)}{2 x-1} \quad g(x)=\frac{(3 x+2)(x-1)}{(x-1)} \\
& f(x)=3 x+2, x \neq \frac{1}{2} \quad g(x)=3 x+2, x \neq 1 \\
& \quad \therefore f(x)=g(x) \text { when } x \neq \frac{1}{2}, 1
\end{aligned}
$$

3.

$$
\begin{aligned}
& f(x)=(x+2)(x-1)-(x+1)(x-4) \text { and } \\
& g(x)=4 x-1 \\
& f(x)=x^{2}+x-2-\left(x^{2}-3 x-4\right) \\
& f(x)=x^{2}+x-2-x^{2}+3 x+4 \\
& g(x)=4 x+2 \\
& \therefore f(x) \neq g(x) \\
& \text { pg. } 68 \text { (bi) }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{4}{2 s-12}-\frac{5}{5 s-5} \\
= & \frac{4}{2(s-6)}-\frac{5}{5(s-1)} \\
= & \frac{2}{s-6}-\frac{1}{s-1} \text { then } L C D
\end{aligned}
$$

