Adding an...

U1D6 MCR SUI
Adding \& Subtracting Rational Expressions Part I

When adding and subtracting rational expressions, we use the same rule for adding and subtracting fractions!

1. Factor th the numerator !
2. Determine the common
denominator \qquad and \qquad rewrite the expression with the common denominate or.
3. \qquad Simplify the numerators). (You may need to expand, add/subtract like terms, and then refactor).
4. Divide any common factors if possible.
5. Simplify, if possible.
6. \qquad restrictions on the variables).

Examples: Simplify and state restrictions for each of the following.
(a) $\frac{16 t-11}{7}+\frac{4-2 t}{7}$
(b) $\frac{3 m^{x^{3}}}{8_{\times 3}}-\frac{5 m^{x^{4}}}{6_{\times 4}}-\frac{2 m^{\times 8}}{3 \times 8}$ LCD

$$
\begin{array}{ll}
=\frac{16 t-11+4-2 t}{7} & =\frac{3 m(3)-5 m(4)-2 m(8)}{24} \\
=\frac{14 t-7}{7} & * \text { no variable }=\frac{9 m-20 m-16 m}{24} \\
=\frac{1(2 t-1)}{\mathbb{X}_{1}} & \begin{array}{l}
\text { ever in } \\
\text { denominator } \\
\text { so, no }
\end{array} \\
=2 t-1 & \text { restrictions. }
\end{array} \quad=\frac{-27 m}{24}
$$

$$
\begin{aligned}
& \text { (c) } \frac{2 \times x}{2 \times 9}-\frac{3 a-b}{6 \times-2 b}-\frac{4 a-3 b}{3 \times 6} \quad \text { LCD } \\
& =\frac{3(3 a-b)-6(a-2 b)-3(4 a-3 b)}{18} \\
& =\frac{6 a-2 b-6 a+12 b-12 a+9 b}{18} \\
& =\frac{-12 a+19 b}{18} \quad \text { No restrictions. }
\end{aligned}
$$

$$
\text { (d) } \begin{aligned}
& \frac{2 x^{2}+3 x+1}{4 x^{2}-9}-\frac{x^{2}-3 x-1}{9-4 x^{2}} \quad-4 x^{2}+9 \\
= & \frac{2 x^{2}+3 x+1}{4 x^{2}-9}-\frac{x^{2}-3 x-1}{-\left(4 x^{2}-9\right)} \times \frac{-1}{-1} \\
= & \frac{2 x^{2}+3 x+1+\left(x^{2}-3 x-1\right)}{4 x^{2}-9}
\end{aligned}
$$

$$
=\frac{3 x^{2}}{4 x^{2}-9}
$$

must factor to
$=\frac{3 x^{2}}{4 x^{2}-9 \quad \begin{array}{c}\text { find the restriction } \\ 4 x^{2}-9 \neq 0\end{array}}$

$$
\begin{aligned}
& \text { (1) } 3 x^{2} \\
& (2 x-3)(2 x+3)
\end{aligned} \begin{array}{cc}
(2 x-3)(2 x+3) \neq 0 \\
2 x-3 \neq 0 & \text { or } \\
2 x+3 \neq 0 \\
2 x \neq 3 & 2 x \neq-3 \\
x \neq \frac{3}{2} & x \neq \frac{-3}{2}
\end{array}
$$

$$
\begin{array}{r}
4 x^{2}-9 \neq 0 \\
2 \neq 9
\end{array}
$$

Pgs. 58-59\#1bd, 2acegi, 3ac, 4ac, 5fg, 6ace pg. 60 \#11

$$
\begin{aligned}
-x^{2} & \neq 9 \\
& \neq \frac{9}{4}
\end{aligned}
$$

$$
x^{2} \neq \frac{9}{4}+\sqrt{9}
$$

$$
x \neq \pm \frac{3}{2}
$$

