MAP 4CI Unit 6 - Algebraic Models

Lesson 1: Exponent Laws

1. Multiplication Law: $\chi^m \times \chi^n = \chi^{m+n}$

When multiplying powers with the same base, keep the base the same and add the exponents.

Ex 1.
$$x^3 \times x^2$$

Ex 1.
$$x^3 \times x^2$$
 (Note: $x^3 \times x^2 =$

) Ex. 2
$$2^3 \times 2^4$$

2. Division Law: $x^m \div x^n = x^{m-n}$

When dividing powers with the same base, keep the base the same and subtract the exponents.

Ex. 1
$$x^5 \div x^2$$
 Ex. 2 $2^4 \div 2^3$

Ex. 2
$$2^4 \div 2^3$$

Note:
$$2^4 \div 2^3$$

$$= \frac{2^4}{2^3}$$

$$= \frac{2 \cdot 2 \cdot 2 \cdot 2}{2 \cdot 2 \cdot 2}$$

3. Power of a Power Law: $(\chi^m)^n = \chi^{m \times n}$

If a power is raised to an exponent, multiply the exponents.

Ex.
$$(x^3)^2 =$$

NOTE:
$$(x^3)^2 =$$

4. Power of a Product Law: $(x \cdot y)^m = x^m y^m$

If a Product is raised to an exponent, distribute the exponent to each factor in the base.

NOTE: This rule does NOT apply to the power of a sum or difference!

Ex. 1
$$(x \cdot y)^5 =$$

Ex. 2
$$(3x^5y^3)^2$$

5. Power of a Quotient Law:
$$\left(\frac{x}{y}\right)^m = \frac{x^m}{y^m}$$

If a Quotient is raised to an exponent, distribute the exponent to every factor in the numerator and denominator.

Ex. 1
$$\left(\frac{x}{y}\right)^2 = \left(\frac{x}{y}\right)\left(\frac{x}{y}\right)$$

Ex. 2
$$\left(\frac{2}{3}\right)^2$$

Ex. 3
$$\left(\frac{2x^3}{3y^2}\right)^3$$

6. Zero Exponents: $x^0 =$

Any power with an exponent of zero is equal to one.

Ex. 1
$$(-2)^0$$
 =

Ex. 2
$$-2^0 = -(2^0)$$

Ex. 1
$$(-2)^0$$
 = Ex. 2 $-2^0 = -(2^0)$ Ex. 3 $(-237x^3y^7)^0 =$

Proof:
$$3^2 + 3^2$$
 $3^2 + 3^2$

$$3^2 + 3^2$$

So,
$$3^0 = 1$$

7. Negative Exponents:
$$x^{-m} = \frac{1}{x^m}$$

A negative in the exponent of a power means to 'flip the base' or 'take the reciprocal'. A negative exponent has nothing to do with the sign of the number.

Ex. 1
$$x^{-2} =$$

Ex. 2
$$4^{-2}$$
 =

Ex. 2
$$4^{-2} =$$
 Ex. 3 $\left(\frac{4}{5}\right)^{-3} =$

Ex. 4
$$\left(\frac{1}{3}\right)^{-2} =$$

Ex. 4 Simplify first, then evaluate using x = 2.

MAP 4Cl Unit 6 - Algebraic Models

Lesson 2: More Exponent Laws

8. Powers of the form: χ^n

The exponent $\frac{1}{n}$ means to take the n^{th} root. i.e. $\chi^{\frac{1}{n}} = \sqrt[n]{\chi}$

Ex 1. $x^{\frac{1}{2}}$ Ex. 2 $x^{\frac{1}{3}}$ Ex. 3 $x^{\frac{1}{12}}$ Ex. 4 $81^{\frac{1}{2}}$

Ex. 5 $(-27)^{\frac{1}{3}}$ Ex. 6 $(-64)^{\frac{1}{4}}$ Ex. 7 $(64)^{\frac{1}{3}}$ Ex. 8 $(64)^{\frac{1}{6}}$

9. Powers of the form: $\chi^{\frac{m}{n}}$

The exponent $\frac{m}{n}$ means to take the nth root and raise the answer to an exponent m.

i.e. $x^{\frac{m}{n}} = (\sqrt[n]{x})^m = \sqrt[n]{(x^m)}$

Ex 1. $x^{\frac{3}{4}}$ Ex. 2 $x^{\frac{2}{3}}$ Ex. 3 $81^{\frac{3}{4}}$ Ex. 4 $(-125)^{\frac{2}{3}}$

Mrs. Behnke

MAP 4CI

Algebraic Models

Name:

1. Simplify using the exponent laws, then evaluate. Give your answer as an integer or a fraction.

a) $5^{-3} \times 5^2 \times 5^4$

b) $4^{17} \div 4^{15}$

c) $(10^4)^{-1}$

2. Simplify the following exponential expressions using the Exponent Laws (remember: no negative exponents in your answers).

a) $x^{5}(x^{3})^{2}$

c) $(x^{-2} \times x^5)^3$

d) $(x^8y^7) \div (x^4y^{-1})^2$

- e) $(3xy^9)^3$ f) $(-123x^{-137}y^9)^0$
- g) -5^{0}

/9

/6

/6

3. Express in radical form, then evaluate exactly.

c) (9)²

MAP 4CI: Unit 6 Algebraic Models Unit 6 Lesson 3 – Exponential Equations Part 1

Definition of an Ex	ponential Equation:	
	Example :	
	Methods to Solve	
1. Common Base:		
2. Systematic Trial:		
4. Logarithms:		

Method #1 : Common Base

Looking for a common base:

Express each number as a power

a. 8 as a power of 2.

b. 81 as a power of 9

c. 81 as a power of 3

d. 0.25 as a power of 2

Using a common base to solve exponential equations

- Step 1 find common base on both sides of equation.
- Step 2 set exponents equal to each other and solve.

Solve the following exponential equations

a.
$$3^x = 3^7$$

b.
$$2^x = 32$$

c.
$$7^{3x-4} = 49$$

d.
$$9^{2x-1} = 27^{3x}$$

Unit 6 Lesson 4

Exponential Equations Part 2

Method #2 : Systematic Trial

Used when you cannot find a common base:

Example1:

a. solve $3^x = 7$ to 1 decimal place

b. solve $2^{x+1} = 5$ to 1 decimal place

Example 2:

Justin has \$1000 in savings to invest, and he wants \$1200 to use to buy a new laptop in a few years. If he earns 4.3% per year, compounded annually, the equation that describes Justin's investment is $1200 = 1000(1.043)^n$, where n is the number of years for which the money is invested. Solve the equation for n to determine how long it will take before he can buy the laptop. Round your answer to one decimal place.

Method #3: Graphing

This is the least accurate of the three methods. It can be used when you cannot calculate rational or decimal exponents.

Method – create a table of values, graph and estimate the solution.

Example:

a.
$$3^x = 35$$

X	у																						
		1																					
		1	П			\top	Т		$\overline{}$					100	_	1	Ī	Π	1				1
		1]
		-	\square	_	_	+	_							_									
		-		\dashv	+	-							H										
	_																					\vdash	1
							_					_											
			$\mid - \mid$	+		+							\vdash							-			-
]		\dashv														_					
		1	\vdash			+-	_				-		\dashv					_					
					_ _	-		_		_	_			_		_					_	_	
			\dashv	\dashv	_	+	Н					-	\dashv		_					_			
				\dashv		1				\dashv													
			\dashv	\dashv	+	+				\dashv	\dashv			\dashv	\dashv	\dashv	i					\vdash	
	15] [

HW: Pg 373 - 374 # 3, 4, 8, 9, 10

MAP 4Cl Unit 6 Lesson 5 <u>Construct and Apply Exponential Models</u>

Method – create a table of values, graph and estimate the solution.

Example 1: Simple and Compound Interest

Jason has \$500 to invest and is considering two investment options.

- Option A: A treasury bond that pays 8% simple interest. The amount, A, after n years is given by the equation A = 500 + 40n
- Option B: A savings account that pays 6.5% per year, compounded annually. The amount, A, after n years is given by the equation $A = 500(1.065)^n$
- a) Graph each relation on the same set of axes. Use Desmis to help you. Describe each relation.
- b) Compare the options. Which is the better investment? Why?

n	A_I	A_2
*		
		<u> </u>

An important property of a radioactive substance is its **half-life**, the time it takes for a radioactive sample to decay to half its original mass. For example, iodine-131 is a radioactive substance with a half-life of eight days. This material is commonly used for thyroid analysis.

a) Complete the table of values for an initial dose of 100 units of iodine-131.

Time (Days)	Units Remaining in the Bloodstream	First Differences	Second Differences	Percent Difference (Ratios)		
		3 100				
5/5/5/						
		- No		-		
			1			

b) Is this relation linear or non-linear? Is this relation exponential? Explain.

c) Construct a scatter plot of the data. Does the trend confirm your answer to part b? Explain.

d)	Determine	an equation	on for the	e curve o	of best	fit				
e)	Determine	how long	it will tak	e for the	initial	dose o	of iodine-131	to de	cay to	one
	unit								_	

**Practice: Pg. 385–387 # 1 – 4, 7 ✓ Answers Pg. 560

MAP4CI - Algebraic Models Review

A. Simplifying and Evaluating Exponents

1. Simplify, with no negative exponents:

a.
$$(m^5)(m^2)$$
 b. $t^4 \div t$ c. $(x^5)^3$

b.
$$t^4 \div t$$

c.
$$(x^5)^3$$

d.
$$\left(\frac{x}{y}\right)^{-3}$$
 e. $-(-x)^0$ f. m^{-2}

e.
$$-(-x)^{0}$$

2. Evaluate the following when c=5 and d=-3.

$$a. c^2d^3$$

b.
$$\frac{c^2d^3}{c^4d}$$

c.
$$\frac{4c^{1/2}d}{c^{3/2}}$$

$$d. c^{-1}d^2 \times c^3 \div c^2$$

3. Evaluate, round to nearest 1000th if necessary.

a.
$$27^{\frac{2}{3}}$$

b.
$$\left(\frac{36}{121}\right)^{\frac{3}{2}}$$

4a. Write in radical form: i. $a^{\frac{1}{3}}$

i.
$$a^{\frac{1}{3}}$$

ii.
$$a^{\frac{2}{3}}$$

ii
$$a^{-\frac{1}{5}}$$

4b. Write in exponential form: i. \sqrt{x}

ii.
$$\sqrt[3]{x^2}$$

iii.
$$\frac{1}{\sqrt[4]{a}}$$

5. The formula $B = 0.4089 M^{\frac{1}{4}}$ gives the bird inhalation rate, B (cubic metres of air per day) for a bird with mass M (kilograms).

a. rewrite the formula using radicals

b. calculate the inhalation rate for a 4.5 kg bald eagle and a 8.0 kg Canada goose.

c. Determine the mass of a bird whose inhalation rate is twice that of a bald eagle.

B. Exponential Equations

6. Solve the following equations algebraically (using common base). Check your answers.

a.
$$4^{2x} = 4^6$$

b.
$$5^x = 625$$
 c. $3^{2x+1} = 9$

c.
$$3^{2x+1} = 9$$

d.
$$10^{x+1} = 10^{2x-3}$$

e.
$$4^{3x-2} = 32^{x+1}$$

e.
$$4^{3x-2} = 32^{x+1}$$
 f. $25^{x+1} = 125^{x-2}$

7. Determine the value of y to the nearest tenth, using systematic trial.

a.
$$10^y = 125$$

b.
$$3^y = 6$$

c.
$$250(1.03)^y = 400$$

8. In the equation $3^{z+1} = 99$ Solve for z by graphing

C. Application Problems (Exponential Models)

- 9. The amount of medicine A remaining in a body after t hours can be calculated using the formula $A = 300(0.8)^t$.
- a. Calculate the amount of medicine remaining in a body after 3 hours.
- b. Determine the time it takes (to the nearest hour) so that there is only 1 mg of medicine remaining in a body.
- 10. \$1500 was invested for 2 years in an account that pays interest compounded annually. What was the interest rate if the investment was worth \$1800 after two years? Use the formula $A = P(1+i)^n$.
- 11. \$25000 was invested in an account that pays 5.0% interest compounded annually. How many years was the money in the account if the investment was worth \$28500 at the end of the term? (Hint use systematic trial or graphing to solve this problem).
- 12. A ball is dropped and bounces several times, losing some of its rebound height after each bounce. The height reached, h, in metres, after n bounces is given by the equation h=1.5(0.75)ⁿ.
 - a) Graph the relation and describe the trend.
 - b) What is the maximum height after i) the first bounce?
 - ii) the second bounce?
 - iii) the third bounce?

Answers:

1.a.
$$m^7$$
, **b.** t^3 , **c.** x^{15} , **d.** $\frac{y^3}{x^3}$, **e.** -1, **f.** $\frac{1}{m^2}$,

3.a. 9, **b.**
$$\frac{216}{1331} = 0.1623$$
, **c.** 0.3051,

4a. i.
$$\sqrt[3]{a}$$
, ii.. $(\sqrt[3]{a})^2$ iii. $\frac{1}{\sqrt[5]{a}}$ **4b.** i. $x^{1/2}$, ii. $x^{2/3}$ iii. $\frac{1}{a^4}$

5a.
$$B = 0.4089\sqrt[4]{M^3}$$
, **b**. 1.26, 1.94, **c**. 11.34kg,

10.
$$i \approx 0.095$$
 or 9.5%.

- **12.** a) The height of successive bounces is decreasing exponentially. (As the number of bounces increases, the height decreases exponentially.)
- **b)** i) 1.125 m
- ii) 0.84 m
- iii) 0.63 m

Pg. 390-391 # 1ac, 2ac, 3, 4a, 5, 6ab, 7abcd, 8, 9ace, 10, 12, 15, 16, 17