\qquad
\qquad

MAP 4CI Unit 6-Algebraic Models

Lesson 1: Exponent Laws

1. Multiplication Law: $x^{m} \times x^{n}=x^{m+n}$

When multiplying powers with the same base, keep the base the same and add the exponents.
Ex 1. $x^{3} \times x^{2}$
(Note: $x^{3} \times x^{2}=$
1 Ex. $2 \quad 2^{3} \times 2^{4}$
2. Division Law: $x^{m} \div x^{n}=x^{m-n}$

When dividing powers with the same base, keep the base the same and subtract the exponents.
Ex. $1 \quad x^{5} \div x^{2}$
Ex. $2 \quad 2^{4} \div 2^{3}$
Note: $2^{4} \div 2^{3}$
$=\frac{2^{4}}{2^{3}}$
$=\frac{2 \cdot 2 \cdot 2 \cdot 2}{2 \cdot 2 \cdot 2}$
3. Power of a Power Law: $\left(x^{m}\right)^{n}=x^{m \times n}$

If a power is raised to an exponent, multiply the exponents.
Ex. $\left(x^{3}\right)^{2}=$
NOTE: $\left(x^{3}\right)^{2}=$
4. Power of a Product Law: $(x \cdot y)^{m}=x^{m} y^{m}$

If a Product is raised to an exponent, distribute the exponent to each factor in the base.
NOTE: This rule does NOT apply to the power of a sum or difference!
Ex. $1 \quad(x \cdot y)^{5}=$
Ex. $2 \quad\left(3 x^{5} y^{3}\right)^{2}$
5. Power of a Quotient Law: $\left(\frac{x}{y}\right)^{m}=\frac{x^{m}}{y^{m}}$

If a Quotient is raised to an exponent, distribute the exponent to every factor in the numerator and denominator.
Ex. $1\left(\frac{x}{y}\right)^{2}=\left(\frac{x}{y}\right)\left(\frac{x}{y}\right)$
Ex. $2\left(\frac{2}{3}\right)^{2}$
Ex. $3\left(\frac{2 x^{3}}{3 y^{2}}\right)^{3}$
6. Zero Exponents: $x^{0}=$

Any power with an exponent of zero is equal to one.
Ex. $1(-2)^{0}=$
Ex. $2-2^{0}=-\left(2^{0}\right)$
Ex. $3\left(-237 x^{3} y^{7}\right)^{0}=$

Proof:

$$
3^{2} \div 3^{2} \quad 3^{2} \div 3^{2}
$$

$$
\text { So, } 3^{0}=1
$$

7. Negative Exponents: $x^{-m}=\frac{1}{x^{m}}$

A negative in the exponent of a power means to 'flip the base' or 'take the reciprocal'. A negative exponent has nothing to do with the sign of the number.
Ex. $1 \quad x^{-2}=$
Ex. $24^{-2}=$
Ex. $3\left(\frac{4}{5}\right)^{-3}=$
Ex. $4\left(\frac{1}{3}\right)^{-2}=$

Ex. 4 Simplify first, then evaluate using $\mathrm{x}=2$.
$\left(x^{-3}\right)\left(x^{2}\right)\left(x^{5}\right)$
When $\mathrm{x}=2$,

Lesson 2: More Exponent Laws

8. Powers of the form: $x^{\frac{1}{n}}$

The exponent $\frac{1}{n}$ means to take the $n^{\text {th }}$ root. i.e. $x^{\frac{1}{n}}=\sqrt[n]{x}$
Ex 1. $x^{\frac{1}{2}}$
Ex. $2 x^{\frac{1}{3}}$
Ex. $3 \mathrm{x}^{\frac{1}{12}}$
Ex. $4 \quad 81^{\frac{1}{2}}$

Ex. $5(-27)^{\frac{1}{3}}$
Ex. $6 \quad(-64)^{\frac{1}{4}}$
Ex. $7 \quad(64)^{\frac{1}{3}}$
Ex. $8 \quad(64)^{\frac{1}{6}}$
9. Powers of the form: $x^{\frac{m}{n}}$

The exponent $\frac{m}{n}$ means to take the $\mathrm{n}^{\text {th }}$ root and raise the answer to an exponent m.

$$
\text { i.e. } x^{\frac{m}{n}}=(\sqrt[n]{x})^{m}=\sqrt[n]{\left(x^{m}\right)}
$$

Ex 1. $\mathrm{x}^{\frac{3}{4}}$
Ex. $2 \mathrm{x}^{\frac{2}{3}}$
Ex. $3 \quad 81^{\frac{3}{4}}$
Ex. $4(-125)^{\frac{2}{3}}$

Quiz next class - no notes!

Mrs. Behnke MAP 4CI Algebraic Models Name:_

1. Simplify using the exponent laws, then evaluate. Give your answer as an integer or a fraction.
a) $5^{-3} \times 5^{2} \times 5^{4}$
b) $4^{17} \div 4^{15}$
c) $\left(10^{4}\right)^{-1}$
2. Simplify the following exponential expressions using the Exponent Laws (remember: no negative exponents in your answers).
/6
a) $x^{5}\left(x^{3}\right)^{2}$
b) $\frac{d^{-5}}{d^{2}}$
c) $\left(x^{-2} \times x^{5}\right)^{3}$
d) $\left(x^{8} y^{7}\right) \div\left(x^{4} y^{-1}\right)^{2}$
e) $\left(3 x y^{9}\right)^{3}$
f) $\left(-123 x^{-137} y^{9}\right)^{0}$
g) -5^{0}
3. Express in radical form, then evaluate exactly.
a) $(-27)^{\frac{1}{3}}$
b) $625^{\frac{3}{4}}$
c) $(9)^{\frac{3}{2}}$

Unit 6 Lesson 3 - Exponential Equations Part 1

Definition of an Exponential Equation: \qquad

Example: \qquad

Methods to Solve

1. Common Base: \qquad
2. Systematic Trial: \qquad
3. Graphing: \qquad
4. Logarithms: \qquad

Looking for a common base:
Express each number as a power
a. 8 as a power of 2 .
b. 81 as a power of 9
c. 81 as a power of 3
d. 0.25 as a power of 2

Using a common base to solve exponential equations

- Step 1 - find common base on both sides of equation.
- Step 2 - set exponents equal to each other and solve.

Solve the following exponential equations
a. $3^{x}=3^{7}$
b. $2^{x}=32$
c. $7^{3 x-4}=49$
d. $9^{2 x-1}=27^{3 x}$
Unit 6 Lesson 4 Exponential Equations Part 2
Method \#2 : Systematic Trial
Used when you cannot find a common base:

Example1:

a. solve $3^{x}=7$ to 1 decimal place b. solve $2^{x+1}=5$ to 1 decimal place

Example 2:

Justin has $\$ 1000$ in savings to invest, and he wants $\$ 1200$ to use to buy a new laptop in a few years. If he earns 4.3% per year, compounded annually, the equation that describes Justin's investment is $1200=1000(1.043)^{n}$, where n is the number of years for which the money is invested. Solve the equation for n to determine how long it will take before he can buy the laptop. Round your answer to one decimal place.

Method \#3: Graphing

This is the least accurate of the three methods. It can be used when you cannot calculate rational or decimal exponents.

Method - create a table of values, graph and estimate the solution.

Example:

a. $3^{x}=35$

HW: Pg 373-374 \# 3, 4, 8, 9, 10

MAP 4CI Unit 6 Lesson 5 Construct and Apply Exponential Models

Method - create a table of values, graph and estimate the solution.

Example 1: Simple and Compound Interest

Jason has $\$ 500$ to invest and is considering two investment options.

- Option $A: A$ treasury bond that pays 8% simple interest. The amount, A, after n years is given by the equation $A=500+40 n$
- Option B: A savings account that pays 6.5% per year, compounded annually. The amount, A, after n years is given by the equation $A=500(1.065)^{n}$
a) Graph each relation on the same set of axes. Use Desmos to help you. Describe each relation.
b) Compare the options. Which is the better investment? Why?

n	A_{1}	A_{2}

Unit 6 Lesson 5 (continued)
Example 2: Half-life.
An important property of a radioactive substance is its half-life, the time it takes for a radioactive sample to decay to half its original mass. For example, iodine-131 is a radioactive substance with a half-life of eight days. This material is commonly used for thyroid analysis.
a) Complete the table of values for an initial dose of 100 units of iodine-131.

Time (Days)	Units Remaining in the Bloodstream	First Differences	Second Differences	Percent Differences (Ratios)

b) Is this relation linear or non-linear? Is this relation exponential? Explain.
c) Construct a scatter plot of the data. Does the trend confirm your answer to part b? Explain.

d) Determine an equation for the curve of best fit.
e) Determine how long it will take for the initial dose of iodine-131 to decay to one unit.

MAP4CI - Algebraic Models Review

A. Simplifying and Evaluating Exponents

1. Simplify, with no negative exponents:
a. $\left(m^{5}\right)\left(m^{2}\right)$
b. $t^{4} \div t$
c. $\left(x^{5}\right)^{3}$
d. $\left(\frac{x}{y}\right)^{-3}$
e. $-(-x)^{0}$
f. m^{-2}
2. Evaluate the following when $\mathrm{c}=5$ and $\mathrm{d}=-3$.
a. $c^{2} d^{3}$
b. $\frac{c^{2} d^{3}}{c^{4} d}$
c. $\frac{4 c^{1 / 2} d}{c^{3 / 2}}$
d. $c^{-1} d^{2} \times c^{3} \div c^{2}$
3. Evaluate, round to nearest $1000^{\text {th }}$ if necessary.
a. $27^{\frac{2}{3}}$
b. $\left(\frac{36}{121}\right)^{\frac{3}{2}}$
c. $2.1^{-1.6}$

4a. Write in radical form:
i. $a^{\frac{1}{3}}$
ii. $a^{\frac{2}{3}}$
iii. $a^{-\frac{1}{5}}$

4b. Write in exponential form: i. \sqrt{x}
ii. $\sqrt[3]{x^{2}}$
iii. $\frac{1}{\sqrt[4]{a}}$
5. The formula $B=0.4089 M^{\frac{3}{4}}$ gives the bird inhalation rate, B (cubic metres of air per day) for a bird with mass M (kilograms).
a. rewrite the formula using radicals
b. calculate the inhalation rate for a 4.5 kg bald eagle and a 8.0 kg Canada goose.
c. Determine the mass of a bird whose inhalation rate is twice that of a bald eagle.

B. Exponential Equations

6. Solve the following equations algebraically (using common base). Check your answers.
a. $4^{2 x}=4^{6}$
b. $5^{x}=625$
c. $3^{2 x+1}=9$
d. $10^{x+1}=10^{2 x-3}$
e. $4^{3 x-2}=32^{x+1}$
f. $25^{x+1}=125^{x-2}$
7. Determine the value of y to the nearest tenth, using systematic trial.
a. $10^{y}=125$
b. $3^{y}=6$
c. $250(1.03)^{y}=400$
8. In the equation $3^{z+1}=99$ Solve for z by graphing

Unit 6 Day 7

C. Application Problems (Exponential Models)

9. The amount of medicine A remaining in a body after t hours can be calculated using the formula $A=300(0.8)^{t}$.
a. Calculate the amount of medicine remaining in a body after 3 hours.
b. Determine the time it takes (to the nearest hour) so that there is only 1 mg of medicine remaining in a body.
10. $\$ 1500$ was invested for 2 years in an account that pays interest compounded annually. What was the interest rate if the investment was worth $\$ 1800$ after two years? Use the formula $A=P(1+i)^{n}$.
11. $\$ 25000$ was invested in an account that pays 5.0% interest compounded annually. How many years was the money in the account if the investment was worth $\$ 28500$ at the end of the term? (Hint - use systematic trial or graphing to solve this problem).
12. A ball is dropped and bounces several times, losing some of its rebound height after each bounce. The height reached, h, in metres, after n bounces is given by the equation
$h=1.5(0.75)^{\mathrm{n}}$.
a) Graph the relation and describe the trend.
b) What is the maximum height after i) the first bounce?
ii) the second bounce?
iii) the third bounce?

Answers:

1.a. m^{7}, b. t^{3}, c. x^{15}, d. $\frac{y^{3}}{x^{3}}$, e. -1, f. $\frac{1}{m^{2}}$,
2.a. -675, b. 0.36, c. -2.4, d.9,
3.a. 9, b. $\frac{216}{1331}=0.1623$, c. 0.3051 ,

4a. i. $\sqrt[3]{a}$, ii.. $(\sqrt[3]{a})^{2}$ iii. $\frac{1}{\sqrt[5]{a}} 4$ b. i. $x^{1 / 2}$, ii. $x^{2 / 3}$ iii. $\frac{1}{a^{4}}$
5a. $B=0.4089 \sqrt[4]{M^{3}}$, b. $1.26,1.94$, c. 11.34 kg ,
6a-3,-b. 4, c. 0.5, d. 4-е. 9, f. 8 ;
7a. 2.1, b. 1.6, c. 15.9
8. $z \approx 3.2$,

9a. 153.6, b. 25.56hrs
10. $i=0.095$ or 9.5%,
11. $n=2.7$ years
12. a) The height of successive bounces is decreasing exponentially. (As the number of bounces increases, the height decreases exponentially.)
b) i) 1.125 m
ii) 0.84 m
iii) 0.63 m

Also try,

Pg. 390-391\# 1ac, 2ac, 3, 4a, 5, 6ab, 7abcd, 8, 9ace, 10, 12, 15, 16, 17

