U1D6_T Surface Area

Friday, September 7, 2018

Surface A...

Surface Area of Prisms and Cylinders

Prism Surface Area:

Cylinder Surface Area:

 $A_{\text{total}} = 2 \times A_{\text{base}} + A_{\text{rectangles}}$ $A_{\text{total}} = 2\pi r^2 + 2\pi rh$

$$A_{total} = 2\pi r^2 + 2\pi rh$$

Example 1: Calculate the surface area of the following triangular-based prism.

$$h^{2} = 10^{2} - 4^{2}$$

$$h^{2} = 100 - 16$$

$$h^{2} = 84$$

$$h = \sqrt{84}$$

$$h = 9.165$$

$$= 8(9.165) + 28(30)$$

$$= 913 \text{ cm}^{2}$$

MAP4CI U1D6

Example 2: Three tennis balls are packaged in a cylindrical container. If each tennis ball has a diameter of 67 mm what is the minimum amount of material required for the container to the nearest square cm (Assume no waste, no extra needed for

