Volume of Prisms and Cylinders

Polyhedron: A three-dimensional object with faces that are polygons.

Prism:

A prism is a three-dimensional solid (a polyhedron). The top and bottom (the bases) are parallel, identical polygons. The lateral faces are rectangles; they meet the bases at right angles. A prism is named by the shape of its bases, for example, rectangular prism, triangular prism, square-based prism.
Volume of any Prism: $\quad \mathrm{V}=\mathrm{A}_{\text {base }} \times$ height NOTE: We usually tip triangular prisms on their sides and call the height the length.
The formula for the volume of a cylinder is the same as a prism.
Volume of Cylinder: $\quad \mathrm{V}=\mathrm{A}_{\text {base }} \times$ height

$$
\mathrm{V}=\pi r^{2} h
$$

Example 1: Calculate the volume of the following triangular-based prism.

$$
\begin{aligned}
& V=b \times h \div 2 \times l \\
& V=8 \times \sqrt{84} \div 2 \times 30 \\
& V \doteq 1099.8 \mathrm{~cm}^{3}
\end{aligned}
$$

10
n
$\frac{1}{4}$

$$
h^{2}=10^{2}-4^{2}
$$

$$
h^{2}=100-16
$$

$$
h^{2}=84
$$

$$
h=\sqrt{84}
$$

$$
h=9.165
$$

U104 MAP4CI
Example 2: : A can of soup has a volume of 375 mL . If the height of the can is 12 cm determine the radius of the can. (Note: $1 \mathrm{~mL}=1 \mathrm{~cm}^{3}$) $\quad V=375 \mathrm{~cm}^{3}$,

$$
375 \div(12 \pi)
$$

$$
\begin{aligned}
V_{\text {cylinder }} & =\pi r^{2} h \\
375 & =\pi r^{2}(12) \\
\frac{375}{12 \pi} & =\frac{12 \pi r^{2}}{12 \pi} \\
375 \div 12 \div \pi & =r^{2} \\
r^{2} & =9.947 \cdots \\
r & \doteq 3.15 \mathrm{~cm}
\end{aligned}
$$

\therefore the radius is about 3.15 cm .

Example 3: A box of chocolates has a volume of 80 cm^{3}. If its length is 10 cm and its height is 2 cm , what is its width?

$$
\begin{aligned}
& V=80 \\
& l=10 \\
& h=2
\end{aligned}
$$

$$
\begin{aligned}
V & =80 \mathrm{~cm}^{3} \\
V & =l w h \\
80 & =10 w(2) \\
80 & =20 \mathrm{w} \\
\frac{80}{20} & =\frac{20 \mathrm{w}}{20} \\
4 & =w \text { is } 4 \mathrm{~cm} .
\end{aligned}
$$

