MAP4CI UNIT 1: FORMULAS

Key Measurements For Conversions: Imperial and Metric
LENGTH

Imperial 1 mile $=1760$ yards 1 yard $=3$ feet 1 foot = 12 inches	Metric $\begin{gathered} 1 \mathrm{~km}=1000 \mathrm{~m} \\ 1 \mathrm{~m}=100 \mathrm{~cm} \\ 1 \mathrm{~m}=1000 \mathrm{~mm} \\ 1 \mathrm{~cm}=10 \mathrm{~mm} \end{gathered}$	$\begin{gathered} \text { Conversion } \\ 1 \text { inch }=2.54 \mathrm{~cm} \\ 1 \text { foot }=304.8 \mathrm{~mm}=0.3048 \mathrm{~m} \\ 1 \text { yard }=914.4 \mathrm{~mm} \\ 1 \text { mile }=1.609 \mathrm{~km} \end{gathered}$
MASS/WEIGHT		
Imperial	Metric	Conversion
16 ounces (oz) = 1 pound (lb)	$1000 \mathrm{~g}=1 \mathrm{~kg}$	$1 \mathrm{oz}=28.35 \mathrm{~g}$
2000 pounds = 1 ton (US)	$1000 \mathrm{~kg}=1 \mathrm{t}$ (tonne)	1 pound $=453.6 \mathrm{~g}$
		1 ton $=907200 \mathrm{~g}$

VOLUME
Note: In Canada, if we say gallons, we mean UK gallons rather than US gallons

Imperial (UK)	Metric	Conversion
8 fluid $\mathrm{oz}=1$ cup	$1 \mathrm{~L}=1000 \mathrm{~mL}$	1 fluid $\mathrm{oz}=28.413 \mathrm{~mL}$
2.5 cups $=1$ pint	$1 \mathrm{~mL}=1 \mathrm{~cm}^{3}$	$1 \mathrm{~L}=0.88$ quarts
5 cups $=1$ quart		1 UK gallon $=4.54 \mathrm{~L}$
20 cups $=1$ UK gallon		1 US gallon $=0.83267$ UK gallons

Value in new units $=$ value in old units $\times \frac{\text { conversion number in new units }}{\text { conversion number in old units }}$

Perimeter/Area Formulas

Perimeter Units: cm m km	Square, Rectangle, Triangle, Trapezoid - add up length of all sides Circle (circumference) $C=2 \pi r$ or $C=\pi d$
Area Units : cm^{2} m^{2} km ${ }^{2}$	

MAP4CI UNIT 1: FORMULAS
\(\left.$$
\begin{array}{|l|l}\hline \text { Volume } \\
\text { Units: } \\
\mathrm{cm}^{3} \\
\mathrm{~m}^{3} \\
\mathrm{~km}^{3}\end{array}
$$ \quad \begin{array}{l}Cube

Volume=x^{3}

Rectangular Prism

volume=l \times w \times h\end{array}\right\}\)| Triangular Prism |
| :--- |
| volume $=b \times h \div 2 \times l$ |
| h is height of triangle |
| is height of prism |
| (or length when on |
| its side $)$ |

Surface Area Units: cm^{2} $\mathrm{~m}^{2}$ $\mathrm{~km}^{2}$	Cube Surface Area $=6 x^{2}$ Rectangular Prism $\mathrm{SA}=2 \mathrm{lw}+2 \mathrm{~h}+2 \mathrm{wh}$
Triangular Prism For surface area, calculate the Area of each side and add them together. $S A=A_{2}$ triangles $+A_{3}$ rectangles Cylinder $S A=2 \pi r^{2}+2 \pi r h$	

MAP4CI UNIT 1: FORMULAS
Pythagorean Theorem:

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& a^{2}=c^{2}-b^{2}
\end{aligned}
$$

b

U1D6: Additional Questions

1. Determine the surface area of each of the following figures. Round answers to two decimal places, where necessary.
a. Rectangular prism: length $=75 \mathrm{~cm}$, width $=28 \mathrm{~cm}$, height $=25 \mathrm{~cm}$
b. Cube: length $=4.4 \mathrm{~mm}$
c. Cylinder: radius $=21 \mathrm{~cm}$, height $=65 \mathrm{~cm}$

Answers: a) $9350 \mathrm{~cm}^{2}$ or $0.94 \mathrm{~m}^{2} \quad$ b) $116.16 \mathrm{~mm}^{2} \quad$ c) $11347.43 \mathrm{~cm}^{2}$ or $1.13 \mathrm{~m}^{2}$

OPTIMIZING MEASURES:

Maximizing Area \& Minimizing Perimeter Summary

	Given Perimeter, Maximizing Area	Given Area, Minimizing Perimeter
Enclosing all 4 sides (optimal is a square $)$	Width $=$ Perimeter $\div 4$ Area $=$ Width 2	Width $=\sqrt{\text { Area }}$ Perimeter $=4 \times$ Width
Enclosing only 3 sides (rectangle with length twice the width)	Width $=$ Perimeter $\div 4$ Length $=2 \times$ Width Area $=$ Length \times Width	Width $=\sqrt{\text { (Area } \div 2)}$ Perimeter $=4 \times$ Width

Maximizing Volume \& Minimizing Surface Area Summary
All of these - provided all sides are enclosed

	Given Surface Area, Maximizing Volume	Given Volume, Minimizing Surface Area
Square Based Prism Enclosing all sides. (optimal is a cube with side length x	Surface Area $=6 x^{2}$ Solve for x. Volume $=x^{3}$	Volume $=x^{3}$ Solve for x. Surface Area $=6 x^{2}$
Cylinder Enclosing all sides. (optimal has height $=$ diameter or $\mathrm{h}=2 r$	Surface Area $=6 \pi r^{2}$ Solve for r. Volume $=2 \pi r^{3}$	Volume $=2 \pi r^{3}$ Solve for r. Surface Area $=6 \pi r^{2}$

