Surface Area of 3-D Shapes

Prism:

Surface Area: $\quad A_{\text {total }}=2 \times A_{\text {base }}+A_{\text {rectangles }}$

Pyramid:
Surface Area: $A_{\text {total }}=A_{\text {base }}+A_{\text {triangles }}$
Cylinder:
Surface Area: $\quad A_{\text {total }}=2 \times A_{\text {circular base }}+A_{\text {lateral face }}$

$$
\mathrm{A}_{\text {total }}=2 \pi r^{2}+2 \pi r h
$$

Cylinder

Cone:

Surface Area: $\quad A_{\text {total }}=A_{\text {circular base }}+A_{\text {lateral face }}$

$$
\mathrm{A}_{\text {total }}=\pi r^{2}+\pi r s
$$

Sphere:

Surface Area: $A_{\text {total }}=4 \pi r^{2}$

Demonstration using Surface Area of Cylinder:
https://www.youtube.com/watch?v=Fyvq-jIQKr8 Orange Demonstration: https://www.youtube.com/watch?v=FB-acn7d0zU
Another Video of interest: https://www.youtube.com/watch?v=T DBkFnr4NM

Example 1: Calculate the surface area of the following triangular-based prism.

MPM 1DI U9D4

Example 2: Calculate the surface area of the square-based pyramid.

Example 3: The slant height of a cone is tripled. Does this triple the surface area of the cone? Explain.

Example 4: A cone is formed from a circle with a 900 sector removed. Another cone is formed from a semicircle with the same radius. How do the two cones differ? How are they the same?

Example 5: The lateral area of a cone with slant height 14 cm is $132 \mathrm{~cm}^{2}$.
a) Find the radius of the cone, to the nearest cm .
b) Find the height of the cone, to the nearest tenth of a cm .

Example 6: A can of soup is 10.3 cm high and its diameter is 6.7 cm . How much paper is required to make the soup can label?

Example 7: The radius of a sphere is tripled. Does this triple the surface area of the sphere? Explain.

Example 8: The surface area of an orange is $147 \mathrm{~cm}^{2}$. What is the diameter of the orange? Round your answer to two decimal places.

