U9D4_T_Surface Area of 3_D Shapes

Tuesday, May 22, $2018 \quad$ 9:21 PM

\&

U9D4_T_Su rface Are...

MPM 1DI U9D4

Surface Area of 3-Dimensional Shapes

Prism:

Surface Area: $A_{\text {total }}=2 \times A_{\text {base }}+A_{\text {rectangles }}$

Pyramid:

Surface Area: $A_{\text {total }}=A_{\text {base }}+A_{\text {triangles }}$

Cylinder:

Surface Area: $A_{\text {total }}=2 \times A_{\text {circular base }}+A_{\text {lateral face }}$
$A_{\text {total }}=2 \pi r^{2}+2 \pi r h$

Cone:

Surface Area: $A_{\text {total }}=A_{\text {circular base }}+A_{\text {lateral face }}$

MPG 1DI U9D4
Sphere:
Surface Area: $A_{\text {total }}=4 \pi r^{2}$
Demonstration surface area of sphere using Surface Area of Cylinder:
https://www.youtube.com/watch?v=Fyvq-ilQKr8
Orange Demonstration:
https://www.youtube.com/watch?v=FB-acn7d0zU

Another Video of interest:
https://www.youtube.com/watch? $\mathrm{w}=\mathrm{T}$ DBkFnr4NM

Example 1: Calculate the surface area of the following triangularbased prism.

$$
h^{2}=84
$$

$$
\begin{aligned}
& n=84 \\
& n=\sqrt{84} \quad \text { OR }
\end{aligned}>181
$$

$$
\begin{aligned}
A_{\text {TOTAL }} & =2 A_{\Delta}+A_{\square ' s} \\
& =2\left(\frac{b h}{2 k_{1}}\right)+l \omega \\
& =8 \sqrt{84}+(28)(30) \\
& =913.3212 \ldots \\
& \doteq 913.3 \mathrm{~cm}^{2}
\end{aligned}
$$

MPM $10 I$ USDA
Example 2: Calculate the surface area of the square-based
pyramid.

$$
\begin{aligned}
& s^{2}=8^{2}+2^{2} \\
& s^{2}=68 \\
& s=\sqrt{68} \text { or }-\sqrt{1 / 88}
\end{aligned}
$$

$$
\begin{aligned}
A_{\text {TOTAL }} & =A_{\square}+4 A_{\Delta} \\
& =b^{2}+4\left(\frac{b s}{2 x}\right) \\
& =4^{2}+2(4)(\sqrt{68}) \\
& =81.96969 \cdots \\
& =\frac{82.0 \mathrm{~cm}^{2}}{\uparrow}
\end{aligned}
$$

Include the 0 to show the accuracy of your answer.

MEM MOI U904 $\quad A_{\text {CONE }}=\pi r^{2}+\pi r s$
Example 3: The slant height of a cone is tripled. Does this triple the surface area of the cone? Explain.

Tripling the swill triple the area of the lateral surface but not the circular base. The total surface area will not be tripled.

Example 4: A cone is formed from a circle with a 900 sector removed. Another cone is formed from a semicircle with the same radius. How do the two cones differ? How are they the same?

$$
\begin{aligned}
\text { Same } & \rightarrow \text { slant height } \\
\text { different } & \rightarrow \text { height } \\
& \rightarrow \text { base radius } \\
& \rightarrow \text { volume } \\
& \rightarrow \text { surface area }
\end{aligned}
$$

Example 5: The lateral area of a cone with slant height 14 cm is $132 \mathrm{~cm}^{2}$.
a) Find the radius of the cone, to the nearest cm .

$$
\begin{gathered}
\pi r s=A_{\text {lateral surface }} \\
\pi r(14)=132 \\
\frac{14 \pi r}{14 \pi}=\frac{132}{14 \pi} \\
r=3 \mathrm{~cm}
\end{gathered}
$$

b) Find the height of the cone, to the nearest tenth of a cm .

$$
\begin{aligned}
& h \text { ss } \quad h 14 \quad h^{2}=14^{2}-3^{2} \\
& h^{2}=196-9 \\
& h^{2}=187 \\
& h=\sqrt{187} \text { or }-\sqrt{x} \\
& h=13.672 . \\
& h \doteq 13.7 \mathrm{~cm}
\end{aligned}
$$

Example 6: A can of soup is 10.3 cm high and its diameter is 6.7 cm . How much paper is required to make the soup can label?

$$
\begin{aligned}
& A_{\text {lateral surface }}=2 \pi r h \\
& A_{\text {paper }}=2 \pi(3.35)(10.3) \\
& \doteq 216.8 \mathrm{~cm}^{2}
\end{aligned}
$$

\therefore the paper area needs to be $216.8 \mathrm{~cm}^{2}$.

Example 7: The radius of a sphere is tripled. Does this triple the surface area of the sphere? Explain.

$$
A_{\text {sphere }}=4 \pi r^{2}
$$

r is squared so tripling r will result in a surface area 9 times the original surface area.

MP IDE U9D4
Example 8: The surface area of an orange is $147 \mathrm{~cm}^{2}$. What is the diameter of the orange? Round your answer to two decimal places.

$$
\begin{aligned}
\text { Asphere } & =4 \pi r^{2} \\
4 \pi r^{2} & =147 \\
\frac{4 \pi r^{2}}{4 \pi} & =\frac{147}{4 \pi} \\
r^{2} & =11.69788 \ldots \\
r & =3.420 \text { or } r=-3.420 \\
d & \doteq 6.84
\end{aligned}
$$

\therefore the diameter of the orange is 6.84 cm

