U9D1_T_ Volume of 3_D Shapes

MM DI U9D1
Warm Up: What is Volume? The amount of space a 3-D object takes up.

Volume of 3-D Shapes
Polyhedron: A three-dimensional object with faces that are polygons.
Prism:
A prism is a three-dimensional solid (a polyhedron). The top and bottom (the bases) are parallel, identical polygons. The lateral faces are rectangles; they meet the bases at right angles. A prism 15 named by the shape of its bases, for example, rectangular prism, triangular prism, square-based prism.

Volume of any Prism: $\quad V=A_{\text {base }} \times$ height

MPM 1DI U9D1

Pyramid:

A pyramid is a three-dimensional solid (a polyhedron) with a polygonshaped base. The remaining sides are triangles that come to a point at the top.
https://www.youtube.com/watch?v=qXC8uzy HFw
Volume of any Pyramid:
$\mathbf{V}=\frac{1}{3}\left(\mathrm{~A}_{\text {base }} \times\right.$ height $)$ or $\mathrm{V}=A_{\text {base }} \times$ height $\div 3$

A cylinder is a three-dimensional solid with identical parallel circular bases. The lateral surface is curved and extends from one base to the other base.

Volume of a Cylinder is the same as a prism: $\mathrm{V}=\mathrm{A}_{\text {base }} \times$ height or $\mathrm{V}=\pi r^{2} \boldsymbol{h}$

Volume of a Cone $=\frac{1}{3} \mathrm{~A}_{\text {base }} \times$ height or $\mathrm{V}=\frac{1}{3} \pi r^{2} h$

A sphere is a round ball-shaped three dimensional solid. Every point on the surface of the sphere is the same distance from the centre of the sphere.

Volume of a Sphere: $\mathrm{V}=\frac{4}{3} \pi r^{3}$ or $\mathrm{V}=4 \pi r^{3} \div 3$

Example 1: Calculate the volume of the following triangular-based prism. length 30 cm is actually
 the height of the prism.

$$
\begin{aligned}
V & =A_{\text {base }} \times H \\
& =\frac{b h}{2} \times H \\
& =\frac{8(9.165)}{2} \times 30 \\
& =1099.8 \mathrm{~cm}^{3}
\end{aligned}
$$

10

$$
\begin{aligned}
& h h_{4}^{10} \int_{h= \pm \sqrt{84}}^{30} \begin{array}{l}
h= \\
h=9.165 \\
h^{2}=10^{2}-4^{2} \\
h^{2}=84 \\
h=9.165
\end{array}=
\end{aligned}
$$

Example 2: Calculate the volume of the following quare-based pyramid.

$$
\begin{aligned}
& \text { mid. } \\
& V=\frac{\left(A_{\text {bose }}\right) \text { (Height) }}{3} \\
& V=\frac{b^{2} h}{3} \\
& V=\frac{4^{2}(8)}{3} \\
& V \doteq 42.7 \mathrm{~cm}^{3}
\end{aligned}
$$

base is a square

$$
A_{\text {base }}=4 \times 4
$$

Example 3: A box of chocolates has a volume of 80 cm^{3}. If its length is 10 cm and its height is 2 cm , what is its width?

$$
\begin{aligned}
V & =l w h \\
80 & =10(\omega)(2) \\
80 & =20 \omega \\
\omega & =4
\end{aligned}
$$

\therefore the box is 4 cm wide.

Example 4: A grain bin has a radius of 12 ft and a height of 48 ft . How much grain will the farmer need to order to fill the bin? (Note: 1 kg of grain fills $1 \mathrm{ft}^{3}$ of space. Also, assume grain (oats) is ordered in tonnes (1 metric ton $=1000 \mathrm{~kg}$).) (Note: the cone portion has a height of 18 feet)

$$
\begin{aligned}
& V=V_{\theta}+V_{\Delta} \\
& 48 \text { feet } V=\pi r^{2} h_{1}+\pi r^{2} h_{2} \div 3 \\
& V=\pi(12)^{2}(30)+\frac{\pi(12)^{2}(18)}{3} \\
& V=4320 \pi+864 \pi \\
& V \doteq 13571.68+2714.33 \\
& V=16286.0 \mathrm{ft}^{3} \\
& \text { need } 16286 \mathrm{~kg} .
\end{aligned}
$$

$$
\therefore \text { we would order } 16 \text { tons }
$$

$$
\text { (or } 16.2 \text { tons). }
$$

M PM ID U9D1
Example 5: A roll of toilet paper has a height and diameter of 11.2 cm . If the inner cardboard roll is 4 cm in diameter, what is the volume of toilet paper on the roll?

$$
\begin{aligned}
& V=V_{\theta}-V_{G} \\
& V=\pi r_{1}^{2} h-\pi r_{2}^{2} h \\
& =\pi(5.6)^{2}(11.2)-\pi(2)^{2}(11.2) \\
& \doteq 962.684 \ldots \\
& \doteq 962.7 \\
& \underbrace{\substack{4 r_{2}=2 \\
r_{1}=5.6 \mathrm{~cm}}}_{\substack{11.2 \mathrm{~cm} \\
h=5.6 \mathrm{~cm}}} \\
& \therefore \text { there is } 962.7 \mathrm{~cm}^{3} \\
& \text { of paper. }
\end{aligned}
$$

Example 6: The radius of a sphere is tripled. How does this affect the volume of the sphere? Explain. $\quad V_{\text {sphere }}=\frac{4}{3} \pi r_{1}^{3}$

So, tripling the radius makes the volume 27 times bigger.

$$
\begin{gathered}
\\
\begin{array}{c}
4 \\
3 \\
\left(3 r_{1}\right)^{3} \\
= \\
= \\
\frac{4}{3} \pi(3)^{3}\left(r_{1}\right)^{3} \\
3^{3}=27
\end{array}
\end{gathered}
$$

Example 7: A spherical gemstone just fits inside a plastic cube with edges 10 cm .
a) Calculate the volume of the gemstone, to the nearest cubic centimetre.
 diameter of sphere 10 cm

$$
\begin{aligned}
& r=5 \\
& V=\frac{4}{3} \pi r^{3} \\
& V=\frac{4}{3} \pi(5)^{3} \quad 5^{23.598 \cdots}
\end{aligned}
$$

$$
V \doteq 524
$$

\therefore the volume of the gem is $524 \mathrm{~cm}^{3}$.
b) How much empty space is there?

$$
\begin{aligned}
& V_{\text {space }}=V_{\text {cube }}-V_{\text {sphere }} \\
&=10 \times 10 \times 10-524 \\
&=476 \quad \therefore \text { the empty space } \\
& \text { is } 476 \mathrm{~cm}^{3} \text { ? }
\end{aligned}
$$

