MPM 1DI U9D1

Warm Up: What is Volume?

Volume of 3-D Shapes

Polyhedron: A three-dimensional object with faces that are polygons.

Prism:

A prism is a three-dimensional solid (a polyhedron). The top and bottom (the bases) are parallel, identical polygons. The lateral faces are rectangles; they meet the bases at right angles. A prism are named by the shape of its bases, for example, rectangular prism, triangular prism, square-based prism.
Volume of any Prism: $\quad V=A_{\text {base }} \times$ height

Pyramid:

A pyramid is a three-dimensional solid (a polyhedron) with a polygon-shaped base. The remaining sides are triangles that come to a point at the top. https://www.youtube.com/watch?v=qXC8uzy_HFw
Volume of any Pyramid: $V=\frac{1}{3}$ ($A_{\text {base }} \times$ height $)$

$$
\text { or } \mathbf{V}=A_{\text {base }} \times \text { height } \div 3
$$

A cylinder is a three-dimensional solid with identical parallel circular bases. The lateral surface is curved and extends from one base to the other base.

Volume of a Cylinder is the same as a prism: $\quad \mathrm{V}=\mathrm{A}_{\text {base }} \times$ height or $\mathrm{V}=\pi r^{2} \boldsymbol{h}$
Similar to the relationship between the pyramid and the prism, the volume of a cone is one third the volume of a prism with the same radius and height.

$$
\begin{aligned}
& \text { Volume of a Cone }=\frac{1}{3} \mathrm{~A}_{\text {base }} \times \text { height or } \mathrm{V}=\frac{1}{3} \pi r^{2} h \\
& \text { Volume of a Sphere: } \mathrm{V}=\frac{4}{3} \pi r^{3} \text { or } \mathrm{V}=4 \pi r^{3} \div 3
\end{aligned}
$$

Example 1: Calculate the volume of the following triangular-based prism.

Example 2: Calculate the volume of the following square-based pyramid.

Example 3: A box of chocolates has a volume of $80 \mathrm{~cm}^{3}$. If its length is 10 cm and its height is 2 cm , what is its width?

MPM 1DI U9D1

Example 4: A grain bin has a radius of 12 ft and a height of 48 ft . How much grain will the farmer need to order to fill the bin? (Note: 1 kg of grain fills $1 \mathrm{ft}^{3}$ of space. Also, assume grain (oats) is ordered in tonnes (1 metric ton $=$ $1000 \mathrm{~kg})$.) (Note: the cone portion has a height of 18 feet)

Example 5: A roll of toilet paper has a height and diameter of 11.2 cm . If the inner cardboard roll is 4 cm in diameter, what is the volume of toilet paper on the roll?

Example 6: The radius of a sphere is tripled. How does this affect the volume of the sphere? Explain.

Example 7: A spherical gemstone just fits inside a plastic cube with edges 10 cm .
a) Calculate the volume of the gemstone, to the nearest cubic centimetre.
b) How much empty space is there?

